
Underground Cable Packing Web Tool
Final Report and Design Document

Iowa State University CPRE/CYBE/EE/SE 491+492
Fall 2021 - Spring 2022

Team Number 19

Professor Mathew Wymore - Faculty Advisor
ISU’s Electrical Power Research Center - Client

Alliant Energy - Prospective User

Team Member - Project Leadership Role
Alexander Young - DevOps and System Engineer

Brevin Wapp - Scrum Master
Haadi Majeed - Quality Assurance Engineer

Matthew Hoskins - Team Lead
Nate Tucker - Tech. Lead

Tom Sun - User Experience and Requirements
Quinten Sorice - Client Point of Contact

Team Email: sdmay22-19@iastate.edu
Team Website: http://sdmay22-19.sd.ece.iastate.edu/
Web Tool Link: https://ucp-webtool.ece.iastate.edu/

Revised 4/28/2022
Version: 1.4.2

Executive Summary

Development Standards and Practices
During this project, many standards and practices were considered to best suit the development
of the project, and some of the most important and planned upon standards to follow are
included here. For more information on the development standards and practices that this
team’s project group will be following can be found in this document's 1.3 Engineering
Standards section.
For broad standards of professionalism and ethics, that were considered during the design
phase of this project, include: the National Society of Professional Engineers (NSPE) ethics, the
Software Engineering (SE) code of ethics, the IInstitute of Electrical and Electronics Engineers
(IEEE) code of ethics, and the Association for Computing Machinery (ACM) code of ethics. The
decision to primarily follow the SE code of ethics was made from the consideration that this
project will be a software development project. For more information on these standards and
ethics see section 5. Professionalism of this document.
The specific standards that this project looked into and will be following during design processes
are listed below with a brief description and expanded upon in section 1.3 Engineering
Standards.

● IEEE 1016: create and maintain software design documentations
● IEEE 830: create a Software Requirements Specification (SRS)
● ISO/IEC/IEEE 29119: software tests defined, operated, and documented properly

For each of these standards the process that this project group will follow can be seen in
various sections of this document. IEEE 1016 focuses on design documentation which would
be the whole of this document. IEEE 830 would be the section regarding software
requirements, 1.2 Requirements and Constraints. ISO/IEC/IEEE 29119 process can be found in
this document’s testing section 4. Testing.

Summary of Requirements
Provided here is a brief summary of this project’s requirements, for more information on these
requirements see section 1.2 Requirements and Constraints. The requirements listed here are
the broad perspective and most significant of the requirements identified by the team and
advisors.

● Final product must be a web application
○ Run on mobile and common browsers

● Must run on ISU server
● Output is a graphical visualization in a portable format
● User input of cables/ducts
● UI must contain EPRC branding

SDMAY19-22 2

Applicable Courses from University Curriculum
Iowa State University courses that contain content applicable to this project would include:

● CPRE 185: Introduction to Problem Solving I
● SPCM 212: Fundamentals of Public Speaking
● COMS 227: Object-Oriented Design
● COMS 228: Data Structures
● CPRE 230: Cyber Security Fundamentals
● CPRE 231: Cyber Security Concepts and Tools
● COMS 252: Linux Operating System Essentials
● COMS 309: Software Development Practices
● CPRE 310: Theoretical Foundations of Computer Engineering
● COMS 311: Introduction to Algorithm Design and Efficiency
● ENGL 314: Reporting, Documenting, and Technical Communication
● SE 317: Introduction to Software Testing
● SE 319: Construction of User Interfaces
● SE 329: Software Project Management
● SE 339: Software Architecture Design
● COMS 363: Database Management
● SE 409: Software Requirements Engineering
● SE 417: Software Testing
● CPRE 421: Software Analysis and Verification for Safety and Security

Knowledge Acquired
The curriculum leading up to this class has covered a majority of the skills and technologies
required to successfully develop this application: a frontend connecting to a server backend with
an algorithm as the primary component (COMS 309, COMS 311, SE 319, et al.), proper team
project documentation (COMS 309, ENGL 314, SE 329, etc.), project planning and
management (SE 329), and team member, advisor, client interaction, and others interaction on
a professional level (SPCM 212, etc.). The only areas of knowledge not covered by course
curriculum leading up to this project and thus areas to gain the most experience in are specifics
of the programming languages not explicitly covered in class (GoLang), high-level code sharing
and development through GitLab, and in-depth algorithm research and development.

SDMAY19-22 3

Table of Contents

Executive Summary 2
Development Standards and Practices 2
Summary of Requirements 2
Applicable Courses from University Curriculum 3
Knowledge Acquired 3
Table of Contents 4
List of Figures, Tables, Symbols, and Definitions 6

List of Tables 6
List of Figures 6

0 Team Section 7
0.1 List of Members and Roles 7
0.2 Required Skill Sets for Project 7
0.3 Skill Set Covered by Team 8

0.3.1 Computer Engineering Majors 8
0.3.2 Software Engineering Majors 9

1 Requirements Section 10
1.1 Problem Statement 10
1.2 Requirements & Constraints 10
1.3 Engineering Standards 12
1.4 Intended Users and Uses 12
1.5 Design Evolution Since CPRE/SE 491 13

1.5.1 Basic Functionality Change 13
1.5.2 Other Design Changes 13

2 Project Plan 14
2.1 Project Management/Tracking Procedures 14

2.1.1 Management Style and Justification 14
2.1.2 Progress Tracking and Management Tools 15

2.2 Task Decomposition 15
2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 19
2.4 Project Timeline/Schedule 20
2.5 Risks And Risk Management/Mitigation 24
2.6 Personnel Effort Requirements 27
2.7 Other Resource Requirements 29

3 Design 31
3.1 Design Context 31

3.1.1 Broader Context 31

SDMAY19-22 4

3.1.2 User Needs 32
3.1.3 Prior Work/Solutions 33
3.1.4 Technical Complexity 33

3.2 Design Exploration 34
3.2.1 Design Decisions 34
3.2.2 Ideation 35
3.2.3 Decision-Making and Trade-Off 36

3.3 Proposed Design 37
3.3.1 Design Visual and Description 37
3.3.2 Functionality 44
3.3.3 Areas of Concern and Development 44
3.3.4 Technology, Frameworks, and Libraries 44

4 Testing 46
4.1 Unit Testing 46
4.2 Interface Testing 46
4.3 Integration Testing 47
4.4 System Testing 47
4.5 Regression Testing 48
4.6 Acceptance Testing 49
4.7 Security Testing 49
4.8 Results 49

4.8.1 Unit Testing Results 50
4.8.2 Interface and Security Testing Results 51
4.8.3 Integration Testing Results 51
4.8.4 System and Regression Testing Results 52
4.8.5 Acceptance Testing Results 52

5 Professionalism 53
5.1 Areas of Responsibility 53
5.2 Project Specific Professional Responsibility Areas 55
5.3 Most Applicable Professional Responsibility Area 57

6 Implementation 58
6.1 Development Process Abstraction 58
6.2 Web Tool Results 58

7 Closing Material 63
7.1 Discussion 63
7.2 Conclusion 63
7.3 References 64

8 Appendices 65
8.1 Appendix I. [Operation Manual] 65

SDMAY19-22 5

8.2 Appendix II. [Alternative Design Versions] 66
8.3 Appendix III. [Other Considerations] 66

List of Figures, Tables, Symbols, and Definitions

List of Tables
Table 1: Team Member and Role List 7
Table 2: Task Decomposition 15-19
Table 3: Risk Management and Mitigation Numeric Definition 26
Table 4: Personal Effort Breakdown 27-29
Table 5: Project Area Considerations 31-32
Table 6: Ethics Table Additions 53-54

List of Figures
Figure 1: Basic Agile Development Visualization 14
Figure 2: Gantt Chart by Major Task View 20
Figure 3: 1.0 Project Planning & Defining 21
Figure 4: 2.0 DevOps & Tech. Setup 21
Figure 5: 3.0 Software Design & Functional Design Verification 22
Figure 6: 4.0 Redesign Algorithm 22
Figure 7: 5.0 Data Tables Setup 22
Figure 8: 6.0 Backend Construction 23
Figure 9: 7.0 UI Construction 23
Figure 10: 8.0 Development Testing Suite 23
Figure 11: 9.0 UAT & Deployment 24
Figure 12: Design Approach 34
Figure 13: API & User Interaction Diagram 36
Figure 14: API Diagram 37
Figure 15: Software Architecture Design 38
Figure 16: Overlay for Cable Setup Mock-up 39
Figure 17: Cable Input Selection Mock-up 40
Figure 18: Cable Input Selection Mock-up (Filled Out) 41
Figure 19: Results Page Mock-up 42
Figure 20: Testing Suite Procedure 49
Figure 21: Landing Page 57
Figure 22: Presets Selection Demonstration 58
Figure 23: Input Process 58
Figure 24: Mobile UI 59
Figure 25: Results Imaging 60
Figure 26: Help Page Image 61
Figure 27: Account Page Image 61

SDMAY19-22 6

0 Team Section

0.1 List of Members and Roles

Team Member Leadership Role

Alexander Young DevOps and System Engineer

Brevin Wapp Scrum Master

Haadi Majeed Quality Assurance Engineer

Matthew Hoskins Team Lead

Nate Tucker Tech. Lead

Tom Sun User Experience and Requirements

Quinten Sorice Client Point of Contact

Table 1: Team Member and Role List

0.2 Required Skill Sets for Project
This section outlines a basic set of skills that would be required by the team in order to complete
the set requirements for this project.

1. Formal project documentation creation and upkeep
2. Project communication between fellow team members, advisors, clients, and other

roles
3. Project planning for timing, work division, and resources
4. GitLab code sharing and protocol allowing smooth development of the project
5. Functional project design process enabling quality software development
6. Algorithm analysis and testing ensuring quick and valid results
7. UI/UX development that will create appealing and easy-to-use web applications
8. Software testing encompassing unit, interface, security, integration, system, regression

and user acceptance testing
9. React frontend communication to Golang backend on server
10. Golang Backend on server communication to React frontend
11. Visual output creation from mathematical results
12. Secure development for web application; preventing unauthorized access of data
13. Database creation and management of potential user input options
14. Software documentation creation that effectively communicates the software

functionality
15. Server-side setup and upkeep for hosting application during development

SDMAY19-22 7

0.3 Skill Set Covered by Team
Included, separated by major, is a summary of the skills that each team member has that is
applicable to the development of this project (skills are only listed in the event that it matches a
required skill set for the project listed in section 0.2 Required Skill Sets for Project).

0.3.1 Computer Engineering Majors

Alexander Young:
1. Formal Project Documentation,
2. Project Communication,
3. Project Planning,
4. GitLab Code Sharing and Protocol,
5. Functional Project Design,
7. UI/UX Development,
8. Software Testing,
9. React Frontend,
10. Golang Backend,
11. Visual Output Creation,
12. Secure Development,
13. Database Creation and Management,
14. Software Documentation,
15. Server-Side Setup and Upkeep

Haadi Majeed:
1. Formal Project Documentation,
2. Project Communication,
3. Project Planning,
4. GitLab Code Sharing and Protocol,
5. Functional Project Design,
6. Algorithm Analysis and Testing,
7. UI/UX Development,
8. Software Testing,
9. React Frontend,
12. Secure Development,
13. Database Creation and Management,
14. Software Documentation,
15. Server-Side Setup and Upkeep

Tom Sun:
1. Formal Project Documentation,
2. Project Communication,
3. Project Planning,
4. GitLab Code Sharing and Protocol,
5. Functional Project Design,
7. UI/UX Development,
8. Software Testing,
12. Secure Development,
13. Database Creation and Management,
14. Software Documentation,
15. Server-Side Setup and Upkeep

SDMAY19-22 8

0.3.2 Software Engineering Majors

Brevin Wapp:
1. Formal Project Documentation,
2. Project Communication,
3. Project Planning,
4. GitLab Code Sharing and Protocol,
5. Functional Project Design,
7. UI/UX Development,
8. Software Testing,
9. React Frontend,
11. Visual Output Creation,
14. Software Documentation

Matthew Hoskins:
1. Formal Project Documentation,
2. Project Communication,
3. Project Planning,
4. GitLab Code Sharing and Protocol,
5. Functional Project Design,
6. Algorithm Analysis and Testing,
7. UI/UX Development,
8. Software Testing,
14. Software Documentation

Nate Tucker:
4. GitLab Code Sharing and Protocol,
5. Functional Project Design,
6. Algorithm Analysis and Testing,
7. UI/UX Development,
8. Software Testing,
9. React Frontend,
10. Golang Backend,
11. Visual Output Creation,
12. Secure Development,
13. Database Creation and Management,
14. Software Documentation,
15. Server-Side Setup and Upkeep

Quinten Sorice:
1. Formal Project Documentation,
2. Project Communication,
3. Project Planning,
4. GitLab Code Sharing and Protocol,
6. Algorithm Analysis and Testing,
8. Software Testing,
10. Golang Backend,
14. Software Documentation,
15. Server-Side Setup and Upkeep

SDMAY19-22 9

1 Requirements Section

1.1 Problem Statement
Many companies with the need to install cabling on a commercial scale are shifting more
towards the method of boring underground, so as to better mitigate environmental hazards and
other risks associated with above-ground cable routing. Thus, the need for software to
streamline these efforts is increasing ever more.

To that end, Iowa State University's Electrical Power Research Center (EPRC) and Professor
Mathew Wymore have requested an expanded web tool version of an existing desktop program
with the addition of new features and improved primary functionality such as: enhanced
algorithm, mobile support, and ease of use. This web tool will provide more readily available
functionality through the application hosted on an EPRC website

The tool's primary use comes from streamlining the billing process for underground cabling
companies and contractors, with a known user being Alliant Energy. Other expected uses, from
a user interaction standpoint, include the assessment of proper bore sizing, project-based
material calculation, streamlined calculation process, and ease of project-specific utility file
creation.

1.2 Requirements & Constraints
The following is a list of project requirements and constraints that have been identified by the
team, the faculty advisor, and an industry client representative. These requirements are broken
down into various categories with clear notation stating constraints. All of these requirements
are taken into consideration for the design and implementation of this project.

Functional Requirements:

● Processing time targets, assuming a test case of one dozen cables/ducts or less
○ < 20 seconds if user must wait for results on page (constraint)

■ Stretch goal: < 5 seconds (constraint)
○ < 10 minutes if user can be emailed results asynchronously (constraint)

● Must be a web application frontend must run on common browsers, including desktop
Chrome, Firefox, Safari and Edge (as time allows)

● Back end must run on target infrastructure (ISU’s ETG servers)
● Capable of sharing recent results via URL
● Output a graphical visualization of the final packing in a portable format (PDF, PNG,

JPG, etc.)

SDMAY19-22 10

● Correct results must be achieved, with correct defined as:
○ All given cables fit in resulting outer diameter
○ Final outer bore size provided (Diameter or Radius)
○ Stretch goal: formally prove algorithm is correct

● Configurable:
○ Set of predefined cables/ducts
○ Unit of measurement (in or cm)

● Stretch goal: export results into downloadable spreadsheet that could have more
information added to it

● Stretch goal: ability to plan out multiple sections of cable run at the same time
● Stretch goal: Setup admin accounts for companies and specific groups for the purpose

of setting a group profile of tables and settings

Qualitative Aesthetics Requirements:

● The (User Interface) UI needs to use Iowa State University (ISU) Electric Power
Research Center (EPRC) branding

● For the output - Cables should be packed to the center of the circle in this visualization

Resource Requirement:

● The use of Iowa State owned servers for hosting our application

UI Requirements:

● Clean and intuitive UI
● UI is functional and usable on mobile browsers (Chrome and Safari)
● Stretch goal: improvements on visualization on invalid duct sizing

Software Requirements:

● Web stack must be well-known and documented technologies expected to be
maintained for at least ten years (constraint)

SDMAY19-22 11

1.3 Engineering Standards
The following are the engineering standards that the team has researched and implemented for
the creation of this software development project. As there is not any hardware testing or
maintenance to be implemented by the team, there are not any standards with the focus on
hardware. The standards below are concerned with the software development, testing, and
documenting of this project.

Create and maintain a software design description or design document as indicated by Institute
of Electrical and Electronics Engineers (IEEE) standard IEEE 1016. This document will be used
for recording design information, addressing various design concerns, and communicating that
information to the design’s stakeholders in the form of data design, architectural design,
interface design, and procedural design.

Create a software requirements specification (SRS) set forth by IEEE 830. This will entail a
document that lays out functional and nonfunctional requirements. The requirements document
will be updated as needed as the project progresses, and the requirements evolve.

When making software based tests of any component of this project, following the standard set
by Internal Organization for Standardization (ISO), International Electrotechnical Commision
(IEC) in ISO/IEC/IEEE 29119 any tests will be properly defined, operated, and documented.
This will entail creating sound tests that will be recorded in documentation.

1.4 Intended Users and Uses
Our primary users would be the users of the original cable packing application, our secondary
users would be those involved in the process of packing and installing underground cable
packages that have a use and access to this software, and anyone else that would be involved
in or interested in the management of underground cable packing would be our tertiary users.

Alliant Energy and Iowa State University’s Electric Power Research Center (EPRC) being the
clients of the project; act as the primary users of the resulting software. Along with the
secondary users of underground cable contractors, and anyone with access to the web tool that
would want to use the product acting as the tertiary users of the resulting project.

Our application is designed to act as a standard for the cable packing industry to remove
guesswork and create consistency. Our primary users would be able to reference our tool to
calculate a consistent price based upon the cables involved that shows both sides how the
calculation was made. Additionally, a by-product of showing the cable packing is that
contractors would be able to determine the best fit for arranging the cables before they lay them
down.

SDMAY19-22 12

1.5 Design Evolution Since CPRE/SE 491
It is important to note that the core components of the project have not undergone a significant
change, and that all of the items in the section are either small changes that did not affect the
main function or had a small change in the output seen by the user. In fact, most of the
overarching design has remained the same and, because of this, this document is largely the
same as its predecessor, the final design document of CPRE/SE 491 for this team.

1.5.1 Basic Functionality Change
An important change decision, which was made in conjunction with Professor Wymore, is that
the final output of the main function, the bore generation and calculation, would be a single
visual representation with a numerical aid instead of a pair of graphs.

The software that this project is based on generated two visual outputs. The first, being a “valid”
bore generation where it was the visual representation of the smallest bore size in a given range
that could fit all of the user's inputs. The second, being an “invalid” bore generation where it
was the visual representation of the next smallest bore size from the first output, and would only
hold so many of the user’s inputs inside of it. This was to show that the “valid” solution was the
smallest bore in a given range that could hold all of the user’s inputted values.

The change that this project has made from that, as well as the original output plan (being the
same as the software this project is based on), is that the output will instead be the absolute
smallest bore that the algorithm could generate without regard to an incrementation of the bore
sizes. It will generate a single visual representation of the output with a bore perfectly fit to be
the smallest given the input. The bore size is then also given as an output numerical value next
to the graph for use by the user.

This change was made with the idea that it would simplify the inputs that the user has to provide
(not having to provide bore increments), and it would simplify the user of the results as it would
be a single absolute graph with a marking on the smallest the bore could be. This will then
allow for user interpretation of the results on what bore would ultimately be chosen based on the
more clear and easy to understand results.

1.5.2 Other Design Changes
A low-impact change that was made to the design was the removal of the option to email bore
results once the calculations are completed. Users can still opt to have their results emailed to
them after the algorithm has run and determined a bore, but we decided to remove the option to
let the user wait for the algorithm to run in the background. The algorithm developed is much
faster than originally anticipated and works with an expected runtime of under one second. This
speed means that the usefulness of receiving results at the moment they finish, from a user
perspective, is severely diminished since the wait time between start and finish of the
calculation is negligible.

SDMAY19-22 13

2 Project Plan

2.1 Project Management/Tracking Procedures

2.1.1 Management Style and Justification

Being completely a software development endeavor, this project’s goal is to create a functioning
and stable web tool. It is best suited to the agile management style because it will allow for
stable and tested development that can have requirements fulfilled and improved upon without
the risk of excessive planning or scope creep.

The project management style that the team has adopted is an agile project management flow
style. This is due to a variety of reasons, including: our group's ability and knowledge to
effectively and efficiently create software with this type of workflow, members ability to take lead
in time management tasks toward development, and the general approach towards software
development that involves iterable improvement.

See above (Figure 1: Basic Agile Development Visualization) is a basic visual representation of
the development process in a clockwise order starting from “Planning” and ending at “Merge”.

SDMAY19-22 14

2.1.2 Progress Tracking and Management Tools

For this project, our team will make use of a number of tools and are all documented as follows.

Tools regarding produced elements: first, GitLab has been used for team collaboration in
producing stable software, as well as document progress and tasks related to the software
development of the project. Second, Google Drive has been used for other produced materials
- primarily along the lines of documents and presentations.

Time scheduling and management devices: first, a Google Calendar was used to plan out all
meetings and due dates not related to code development. Second, a project Gantt chart was
created and utilized to properly manage all project deliverables and software based milestones.

As for communication methods: first, a structured Discord server has been used for immediate
communication between team members, teaching assistant (TA) Jacob Conn, and Professor
Mathew Wymore. Second, project group email (through school email) has been used for
communication to other parties such as: Alliant Energy representatives, Iowa State University’s
(ISU’s) Engineering Technology Support (ETS), ISU’s Electronics and Technology Group (ETG),
and ISU’s Electric Power Research Center (EPRC). Lastly, a Webex meeting room has been
established for any meetings that the project team will be hosting.

2.2 Task Decomposition
Basic Task Decomposition with numerous subtasks per broad realized task listed below with
expected dependencies and clear numbering system for this project.

1. Project Planning & Defining
1.1. Team dynamic planning

1.1.1. Begin team communication
1.1.2. Setup primary communication channels between team members and

advisors (TA Jacob Conn, and Professor Mathew Wymore)
1.1.3. Setup primary communication channels with all other connected parties

(Alliant Energy, ETS, ETG, EPRC)
[Dependent on 1.1.2]

1.1.4. Assign leadership roles among team members
[Dependent on 1.1.2]

1.2. Develop Requirements
1.2.1. Meet with professor Mat Wymore
1.2.2. Meet with client: Alliant Energy

[Dependent on 1.2.1]
1.2.3. Develop requirements documentation

[Dependent on 1.2.1, 1.2.2]

SDMAY19-22 15

1.2.4. Determine engineering standards to follow in software development for
this project
[Dependent on 1.2.3]

1.3. Project Plan Instantiation
1.3.1. Documentation setup
1.3.2. Document breakdown team meeting

[Dependent on 1.3.1]
1.3.3. Finalize original Project Plan document - living document for when the

need for improvements, or alterations
[Dependent on 1.3.1, 1.3.2]

1.4. Software stack planning
1.4.1. Determine specific software stack
1.4.2. Get familiar with tech stack - Typescript React and Go languages

[Dependent on 1.4.1]
1.4.2.1. Perform individual practice to familiarize members with unique

syntax
1.4.3. Create basic proof of concept for general functionality plans

1.4.3.1. Sending information from back to front for image generation
1.5. Project Merge and Pull Request (PR) Protocol

1.5.1. Team initialization of the preliminary process of getting new code
accepted
[Dependent on 1.3.3]

1.5.2. Limits on number of team members approval for a single PR
[Dependent on 1.5.1]

1.6. Continuous Documentation Upkeep / Technical Writing
1.6.1. Requirements Document changes when goals change

[Dependent on 1.2]
1.6.2. Project Plan and Gantt Chart updating

[Dependent on 1.3]
1.6.3. Software documentation as newly accepted PR’s occur

[Dependent on 1.5]
2. DevOps & Tech Setup

[Dependent on 1.4]
2.1. Initialize project website
2.2. Set up CI/CD (Continuous Integration/Continuous Deployment) pipeline

2.2.1. Choosing the technologies that best integrate with our software.
2.2.2. Implementing the chosen technologies and verifying they will continue to

work for the 10 rated years of project lifetime.
2.2.3. Testing the chosen technologies to ensure they deliver correct results.

2.3. Set up deployment environments
[Dependent on 2.2]

2.3.1. Testing the chosen technologies on the deployment servers to ensure that
deployments go smoothly

2.3.2. Testing the technologies to ensure they will continue to operate in the
deployment environments even after host and software updates.

SDMAY19-22 16

2.4. Set up individual team member work environment
[Dependent on 1.4]

3. Software Design & Functional Design Verification
[Dependent on 1.2]
3.1. Create User Interface (UI) Mock-Ups

[Dependent on 1.2]
3.1.1. Update and Improve UI Mock-Ups

3.2. User Experience (UX) testing
[Dependent on 3.1]

3.3. Final design verification with clients and managing professor
[Dependent on 3.2]

4. Redesign Algorithm
4.1. Go through mathematical processes to verify effectiveness of current algorithm
4.2. Redesign to work from the inside out of the duct

[Dependent on 4.1]
4.3. Convert to a compilable programming language for speed purposes

[Dependent on 4.2]
4.4. Prove mathematical algorithm - stretch goal

[Dependent on 4.3]
5. Setup Data Tables

5.1. Render
5.1.1. Id
5.1.2. List of Cables
5.1.3. List of Cable positions
5.1.4. Creation Date

5.2. Cable
5.2.1. Id
5.2.2. Label
5.2.3. Color? Arbitrary for display purposes
5.2.4. Diameter

5.3. Company Admin Account (Stretch Goal)
5.3.1. Single account per company or specific group of users
5.3.2. Allow updating of associated selection profile
5.3.3. Profiles will be open to admin and non-admin users
5.3.4. Creation of account design

6. Backend Construction
[Dependent on 2.]
6.1. Implement HTTP requests

6.1.1. Insert, delete, and read - no need for update
6.2. Convert/manage algorithmic results to transferable format

[Dependent on 4.3]
6.2.1. Send format to frontend to be drawn
6.2.2. Send results to specified email (if requested)

6.3. Configure web server to load balance/distribute requests to different
microservices

SDMAY19-22 17

6.3.1. Choose web server, the choice will motivate a lot of API design choices
6.3.2. Install and enable on the server provided by ISU

[Dependent on 2.]
6.4. Admin accounts handling (Stretch Goal)

[Dependent on 5.3]
6.4.1. Security of every account
6.4.2. Update corresponding profile tables and settings

6.5. Calculate multiple sections of cable run at a given time (Stretch Goal)
6.6. Export results into a semi-formatted spreadsheet (Stretch Goal)

7. UI Construction
[Dependent on 3.]
7.1. Input desired duct and cable specifications that will be run through the algorithm

[Dependent on 6.2]
7.2. Receive backend results and convert to graph drawing/expected output

[Dependent on 6.2]
7.3. Include EPRC required branding

7.3.1. Communicate with Professor Mathew Wymore and EPRC about attaining
necessary branding for the website

7.4. Selection of company or specific group profile settings and tables (Stretch Goal)
[Dependent on 6.4]

7.5. Input for calculating multiple sections of cable run at a given time (Stretch Goal)
[Dependent on 6.5]

7.6. UI improvement to visualizing invalid duct size (Stretch Goal)
7.6.1. Show “invalid” wires overlaid the “invalid” duct size
7.6.2. Visually alter color of “invalid” overlay

[Dependent on 7.6.1]
8. Development Testing Suite

8.1. Unit testing being a part of team PR protocol will occur with continuous software
development
[Dependent on 1.5]

8.2. Interface testing of software for any UI in production
[Dependent on 3.]

8.3. Security Testing for applicable software after initial development
8.4. Integration testing of software produced at sprint finalization stages

[Dependent on 4.0, 6.0, 7.0]
8.5. System & Regression Testing with integrated software for each merge to main

code branch
[Dependent on 8.4]

For more detailed information on testing tasks see document section 4.0 Testing

9. UAT & Deployment
9.1. Internal acceptance testing

[Dependent on 8.]
9.2. Demo and testing with clients

[Dependent on 9.1]

SDMAY19-22 18

9.2.1. Demo with Professor Wymore
9.2.2. Demo with Alliant

9.3. Final production deployment
[Dependent on 9.3]

Table 2: Task Decomposition primary task enumeration and summary: 1.0 Project Planning and
Defining, 2.0 DevOps and Technology Setup, 3.0 Software Design and Functional Design
Verification, 4.0 Redesign Algorithm, 5.0 Data Tables Setup, 6.0 Backend Construction, 7.0
User Interface Construction, 8.0 Development Testing Suite, 9.0 User Acceptance Testing and
Deployment.

Task Decomposition version number: 1.0.0

2.3 Project Proposed Milestones, Metrics, and Evaluation
Criteria
Milestones

1. Protocols, Technologies, and Requirements have a team consensus.
2. Git is configured with CI/CD and individual work environments are set up.
3. Mockups are verified by client, professor, and TA.
4. Algorithm must produce the correct result within 20 seconds.
5. Frontend and backend can successfully communicate.
6. Application must pass all unit tests and produce expected results.
7. Application must be deployed on the Iowa State server.

Evaluation

For each task that will be represented as an issue in Git, they will be assigned an effort value of
the expected amount of time required to complete each issue. In our Git Kanban style board, we
can visually see how many issues for each milestone have been completed, and how many are
left. This allows us to not only see how close we are to a milestone, but also to track individual
progress.

SDMAY19-22 19

2.4 Project Timeline/Schedule
The following is the teams’ original Gantt chart. It includes: tasks, substasks, who each task is
assigned to, the current tasks’ progress, the start date, and the end date. The start date is the
current recommended day in which the team or those assigned to the specific tasks should
begin based on dependencies and due dates. Some tasks are given ample time to demonstrate
their complexity, and expected time requirements.

There are a few tasks that are ongoing throughout most of the project. These tasks are
continuous documentation (technical documents maintenance, and software documentation),
and the continuous unit testing of code as software for both proof of concept and final project
are created.

Each section on the Gantt chart is the major task derived from 2.2 Task Decomposition with the
various subtasks making up each different colored section. All known deliverables are therefore
included in the chart in the form of tasks. Tasks that are associated are shown to be so in either
being in the same major task section or through the excel gantt chart calculation of not having
start days before ending dates of dependent tasks.

All date information is shown at the top of the excel sheet, which has all tasks on a single gantt
chart, in relation to the project with a start date of August 30, 2021 (Week 1).

Figure 2: Gantt Chart by Major Task View

Seen above (Figure 2), is a generalized version of the gantt chart to the nine major tasks. More
information can be found below in each individual major task gantt chart view.

SDMAY19-22 20

This zoomed out section of the project gantt chart is task Figure 3: 1.0 Project Planning &
Defining (shown above). This section continues to span the weekly schedule as it includes the
upkeep of various documents relevant to the project. It began on week one of the planner and
continues from there with a variety of tasks that can be seen more closely in 2.2 Task
Decomposition.

Task Figure 4: 2.0 DevOps & Tech. Setup (shown above), is the early planning, staging, and
setup of technology and CI/CD pipelining.

SDMAY19-22 21

Task Figure 5: 3.0 Software Design & Functional Design Verification (shown above), will involve
a few tasks dependent on each other in some form that will allow for the planning for the
eventual UI of the final software project.

For task Figure 6: 4.0 Redesign Algorithm, is a math focused major task that will need to occur
early on in order to properly ensure the current Python code can be verified, and converted to fit
the projects’ needs. The mathematical verification of the algorithm was designated as a stretch
goal and with the other requirements for the project taking higher priority, we were ultimately
unable to complete this extra goal.

Task Figure 7: 5.0 Data Tables Setup (shown above), is a short major task that will be done in
order to ensure all possible data points for entry are stored and available to the user input.

SDMAY19-22 22

Task Figure 8: 6.0 Backend Construction (shown above), involves the long development of all
the backend components to this software project. It starts after final design approval, and proof
of concept programming.

Task Figure 9: 7.0 UI Construction (shown above), will begin at a later point after proof of
concept software has been constructed, as well as, general design given approval.

As for task Figure 10: 8.0 Development Testing Suite (shown above), what is shown here is the
ending of the testing suite that starts with the software development and ends with the
development completion, and includes Unit, Interface, Security, Integration, System, and
Regression testing.

SDMAY19-22 23

The last major task, Figure 11: 9.0 UAT & Deployment, occurs at the end of the project with final
testing and software fixes to be completed prior to final deployment. As testing will be occurring
throughout the project ideally this will prove very efficient.

2.5 Risks And Risk Management/Mitigation
Each major task that was identified in 2.2 Task Decomposition section is broken down
individually for what risks could potentially occur along with an evaluation on the likelihood, and
what the plan to mitigate these potential risks during the project development process. A table
reference is listed below for each individual evaluation type. As this is an Agile project, risks
and risk mitigation will be associated with each sprint.

1. Project Planning & Defining
- Misunderstanding requirements

- Unlikely, Catastrophic: Not properly understanding what our client is asking could
mean building an application that is not useful or does not fit their needs. We will
need to meet (and have been meeting) with our client to fully understand what
they are looking for and how we can deliver an app that fits their needs.

2. DevOps & Tech set up
- Mismanagement of setup

- Possible, Negligible: If something in our virtual machine setup ends up being
wrong, there is little hassle in getting the error fixed or configuration changed to
resolve our problem.

3. Software Design & Functional Design Verification
- Architectural problems

- Rare, moderate/major: A major flaw with our architecture could result in problems
throughout our project, so it will be paramount to select an architecture that will fit
our needs before starting development

SDMAY19-22 24

- Wireframe issues
- Unlikely, negligible: If our wireframes for design verification are not to the spec

our client specifies, we will simply need to change them to fit requirements before
implementing their design in the full application.

4. Redesign Algorithm
- Mathematical Error

- Rare, Major/catastrophic: An error in the calculations regarding the cable-fitting
algorithm would result in delivery of incorrect results and the plethora of problems
that delivering incorrect calculations to a client would entail.

- Mitigation: Checking our algorithm results against the original application and
against mathematically sound equivalent theorems.

- Optimization
- Likely, negligible: A low-consequence risk with redesigning an algorithm is that it

is not as efficient or optimized as it possibly could be, so there could be a chance
to reduce latency with a highly-optimized algorithm.

5. Setup Data Tables
- Incorrect Table configuration

- Unlikely, Minor: If a table for storing results or information is configured
incorrectly, then a mitigation would be making a change in the database to
accurately reflect our data, though going unchecked this could result in the
mishandling of data storage.

6. Backend Construction
- Improper data treatment and storage

- Unlikely, Moderate: The worst outcome that can happen with a poorly built
backend is returning incorrect data, which can mean inaccurate results and
possibly a mischarge to a client. Ensuring that our backend returns the correct
information and in a timely manner will be important as we build the application.

7. UI Construction
- Confusing UI

- Rare, Minor/moderate: If users cannot understand how to use the app, they will
not be able to get the information they want out of it. It will be important for us to
perform user acceptance testing so we can gauge how intuitive and easy to
understand our application front end is.

- Dysfunctional UI
- Rare, Minor: If the UI is so poorly built that it either does not work or cannot give

results, that would be frustrating as the user. A dysfunctional UI is hard to miss
when using proper testing techniques, so this should be a very rare risk to occur.

8. Development Testing Suite
- Lack of comprehensive tests

- Unlikely, Major: With incomplete testing, there is a chance that edge cases in
how our app is used could go unnoticed which would be frustrating for users that
encounter them. Or edge case calculations could turn out wrong, and missing
them would mean the possibility of incorrect charging of clients for bore sizing.

SDMAY19-22 25

- We will have to ensure that our testing methodology is thorough and we know the
results we are looking for.

- Incorrect testing validation
- Unlikely, Major: If tests run on the application are configured incorrectly or give

false positives/negatives, there is a chance that an error would go unnoticed.
- We will have to ensure that our testing methodology is thorough and we know the

results we are looking for.
9. UAT & Deployment

- Inaccurate Results
- Rare, Moderate: Should our user testing come back inconclusive or yield

inaccurate results, then we would have a harder time improving the usability of
the application should there be something substantially wrong with the design.

Consequence ->
Likelihood \/

Negligible:
1

Minor:
2

Moderate:
3

Major:
4

Catastrophic:
5

Almost Certain: 5 5, Moderate 10, High 15, Extreme 20, Extreme 25, Extreme

Likely: 4 4, Moderate 8, High 12, High 16, Extreme 20, Extreme

Possible: 3 3, Low 6, Moderate 9, High 12, High 15, Extreme

Unlikely: 2 2, Low 4, Moderate 6, Moderate 8, High 10, High

Rare: 1 1, Low 2, Low 3, Low 4, Moderate 5, Moderate

Table 3: Risk Management and Mitigation Numeric Definition

2.6 Personnel Effort Requirements
We have a seven-person team. As a result, the tasks that require individual effort of every team
(such as meetings and validations) will be scaled up accordingly to reflect total personnel effort.
These evaluations are listed in table form with the task name, hours required, and a brief
explanation of the time requirements.

Task Name Est. hrs Explanation

Begin Team Communication 3.5 Half-hour each to set up communication channels

Set up communication with
advisors

7 Half-hour long meeting each to meet with Jacob
Conn and Mathew Wymore

SDMAY19-22 26

Set up communication with
external stakeholders

17 2-hour long meetings (total) to meet with external
stakeholders. 3 hours for email communications

Assign leadership roles 7 1 hour long team meeting

Requirements - Wymore
meeting

7 2 x half hour long meetings

Requirements - Alliant
Energy

14 2 x hour long meetings

Requirements Document 15 1 hour team meeting + 1 hour individual work
time + time to proof-read and submit assignment

Engineering Standards 14 Half hour team meeting + half hour individual
work

Project Plan Set Up 14 2 hour individual work time

Project Plan Task Breakdown 7 1 hour long meeting

Finalize Project Plan 10.5 1 hour individual work and half hour meeting to
finalize the document

Determine Software Stack 21 1 hour individual work and 2 hour team meeting

Get Familiar with Tech Stack 60 8 hour for each person, with some additional time

Tech Stack PoC 40 Basic stack set up, should be fairly simple

Project PR Standards
Meeting

14 2 hour long meeting

Continuous Documentation
and Technical Writing
Up-keep

175 1 hour per-person for 25 weeks

Initialize Project Website 10 Infrastructure is already set up, so the team just
need to construct the html pages

CI/CD Pipeline Set Up 15 Creating initial pipelines and integrate with Gitlab,
some learning may be required

Set Up Deployment
Environment

20 May involve meetings with IT services, set up
VM/server

Set Up Individual Work 28 4 hours per-person, since some

SDMAY19-22 27

Environment learning/experimenting may be required

Create UI Mock-Ups 80 Includes time to learn mock-up tools and creating
iterations of mock-ups

UX Testing 20 Include time to construct tests, meeting times with
stakeholders and compiling data

UI Mock-Up Verification 14 2 hour long meeting with clients

Verify Current Algorithm 15 Time for getting familiar with the tool and
extensive testing

Redesign Algorithm 40 Includes time for development and testing

Convert Programming
Languages

15 Includes time for development and testing in new
language

Mathematical Proof of
Algorithm

40 Some research and information seeking may be
required

Set Up DataBase 15 Infrastructure should be already set up

Create Data Table - Render 4 Includes time to test created table

Create Data Table - Cable 4 Includes time to test created table

Backend Construction -
HTTP

100 Includes time to develop and test all functions

Backend Construction -
Transferable format

50 Some Prototyping may be required

UI Construction - Inputs 50 Some Prototyping may be required

UI Construction - Visualize
results

100 Prototyping and some research into visualization
tools required

UI Construction - EPRC
Branding

40 Adding styles/icons to the constructed software
shouldn’t take too long

SDMAY19-22 28

Unit Tests 200 Should be done alongside development,
estimated 1 hours per week per person

Integration Testing 100 Includes time for extensive test and making any
fixes/adjustments

Internal Acceptance Testing
(IAT)

14 2 hour meeting to review all aspects of the
application

Demo and User Acceptance
Testing (UAT)

14 2 hour meeting to review all aspects of the
application

Final Production
Development

60 Includes time to deploy and fix any last minute
issues. Includes some time for monitoring after
deployment

Table 4: Personal Effort Breakdown

For this current estimation, this would evaluate to 1,474 hours that would be split evenly
between the team of seven people. This would make it about 210.5 hours per team member
over the course of two regular length school semesters. These numbers are subject to
revaluation as the project progresses.

2.7 Other Resource Requirements
As stated previously, this project is completely software based, and was not provided a budget
making the total amount of resources small to begin with. Work hours from the team and its
partners will be required for the project's completion, but can be found in section 2.6 Personnel
Effort Requirements for the team directly.

Aside from these resources, the only other resource requirement for this project is an Iowa State
University server that will be hosting the web tool which will be negotiated and set up in
conjunction with ETS.

SDMAY19-22 29

3 Design

3.1 Design Context

3.1.1 Broader Context

The broader context of this design problem is situated around the concept of converting an
executable program that exists for the purpose of making the transition between aboveground
wiring (specifically electrical in nature) into an underground cabling setup.

The communities that this project is being designed for can be broken down into two entities
being those in the electrical community that would be involved in boring of underground cabling,
and the other community would be representatives of the professor client and EPRC. The
communities that would be affected by this design would be those that will utilize the resultant
software for determining overall bore sizes of the underground cabling. These communities will
be affected purely on their usage of the web tool for determining proper bore size without any
knowledge other than that of what wiring will need to be buried.

The societal need that this project addresses is the need for a more easily-accessed software
tool for determining the underground tunnel bore size given a set of cables that need to fit into it.
The expected use will be for the purpose of pricing and acquisition of appropriate amounts of
wiring, meaning that the societal needs will be focused in that area specifically.

List of relevant considerations related to the project in each of the following areas:

Area Description Examples

Public health,
safety, and
welfare

A welfare connection between the
project would be the incentive of
easing the overall planning process
for moving wiring underground to
prevent powerlines from being
affected by weather and causing
damage or injury.

Reduces the possibility of
having improper ducting/boring
sizes making the move to
underground wiring more stable
of a wiring option.

SDMAY19-22 30

Global, cultural,
and social

The values and practices of the
project and the process for the
project would not be any realm that
would cause concern regarding any
affected communities (Iowa State
University EPRC, Potential users).

This project is a web tool for
specific calculations and
visualizations. The process of
creation and subsequent usage
will follow programming
standards for ease of use and
user acceptability.

Environmental An indirect impact created by this
project would be, since it enables
an ease of underground cable
construction, the amount of
tampering with top level earth
would change as well as the
amount of existing above ground
cabling.

This would imply an increase in
undergrounding boring for
laying underground cabling, and
maintaining said cable. The
other effect would be less
vertical above ground cabling
structures that would either
obstruct natural elements or
become potential debris.

Economic As the final project web tool is to be
used in a planning and financing
sense by potential clients, this
project would have the ability to
save labor and reduce human
error. The only expense of the
project would be by ISU for
maintaining the code and server
hosting the program.

This would mean that there
would be a small cost to the
hosting user (ISU), and a free
tool for calculations for all other
users that can ensure accurate
planning of wire/duct sizes and
corresponding amounts.

Table 5: Project Area Considerations

3.1.2 User Needs

List of Users:

● The primary users of this project: ISU’s EPRC acting as hosts and eventual software
controllers, primary client groups consisting of companies with underground cabling
needs (specifically, Alliant Energy)

SDMAY19-22 31

● The secondary users of this project: various contractors that would be working with
either a primary user or another outside party, with the ultimate goal of setting up
underground cable packages.

● The tertiary users of this project would be every other user of the final product as it will
be an openly available web tool with association to ISU’s EPRC.

Individual User Needs:

The primary user, in regards to ISU’s EPRC, requires a web based software that will be able to
complete some basic wiring and bore size functions because an existing executable program
was requested, by the other subcategory of primary users, to be implemented as an openly
sharable program.

The other primary users need a program that can be openly available while easily and efficiently
calculating optimal bore size that can be shown as a visual representation with proof of optimal
measuring. This is for the purpose of being able to correctly predict the sizing and amount of
wires and ducts for purchasing, and to appropriately assess each individual jobs pricing for
contractors.

The secondary users group need a way to have easy access to the algorithm without having to
obtain the existing executable software from EPRC to prevent property violations, so that this
group can confirm pricing with the primary users as well as gain the ability to create their own
calculations.

The tertiary users group needs a way to gain access to quality software that can clearly show
the results of circular objects embedded inside other circular objects because this could be a
complicated mathematical problem that would be made simple from this software that is already
being created for the use of the primary and secondary groups.

3.1.3 Prior Work/Solutions
A previous example of a solution that fulfills the same need as our project has been made at
Iowa State, namely the Python-based desktop application created by our professor contact
Mathew Wymore, however the Python app has some shortcomings. The Python application
works well enough in that it retains a simple interface and can give accurate results quickly but
lacks portability (as a static desktop application) and has no online connectivity. The web
version of the application we intend to build this year will open the door for additional features
and would be more user-friendly to a wide range of clients that may not want to set up a desktop
application to get an accurate cost calculation for laying underground cables. A web version
would also allow for the exporting of results in a more streamlined fashion compared to a
screenshot of the Python application’s input and output.

3.1.4 Technical Complexity
The design of this project will not simply entail the porting of the existing Python application into
a webpage; there will be an analysis and redesign of the algorithm that determines cable best-fit

SDMAY19-22 32

in a given diameter pipe which will have to be verified against existing mathematical models, a
new interface that can interact with our algorithm though a webpage, and the addition of new
features like sharing results through links, storing results for future reference, and in the future
offer mobile browser support, something the Python application cannot currently offer at all.

To implement such updates and improvements, we will have to build an updated model of the
existing cable packing tool’s algorithm to ensure optimal performance and accuracy. The
algorithm will then need to have an interactive front-end, back-end, and database to allow users
to interact with the app, retrieve results, and store/lookup previous calculations respectively.
While existing technologies will aid us in building the structure for this application, such as
JavaScript libraries to give us more front-end functionality or backend frameworks to allow faster
querying of the algorithm, there are no plug-and-play solutions on the market that would fulfill
the same goals as us building this tool ourselves.

3.2 Design Exploration

3.2.1 Design Decisions

Below is a list of some key design decisions that the team has made in relation to the solution
that we have devised. The project is purely a software development project, thus limiting us to
purely software-based decisions. It should be noted that the application is hosted on an ISU
server, and decisions related to said server have been made together with standard
implementation and technology in mind.

After the initial meeting with a representative from the expected user (and non-primary client),
Alliant Energy, it became clear that a variety of features they had envisioned were too disparate
from the originally planned project end-goal put forth by EPRC and Professor Wymore. The
original response that the team went with was to hold off on configuring the design of the project
to fit these proposed functionalities, and to continue with the original vision that was created
after requirements talks with the primary client representative of Professor Wymore. Moving
forward in the design process we took into account Alliant Energy’s ideas to build upon the
planned features and requirements in order to accommodate their hopes for the project while
making sure the focus was still on the original project vision. Many stretch goals for this project
(featured in section 1.2 Requirements & Constraints) come from some of the additional
functionality that Alliant Energy expressed interest in.

Further elaboration on potential and unimplemented design choices can be found in Appendix ii.

SDMAY19-22 33

3.2.2 Ideation

The process of exploring potential design decisions was a multistep procedure that involved the
identification of the project or tasks requirements, followed by identifying technologies,
programming languages, and/or frameworks that could fulfill these requirements. After that step
the team would come together and decide on a technology to move forward with (after weighing
the pros and cons of each option. This would then lead to testing to ensure that the decided
technology would be able to accomplish the requirements. At that point, one of two actions
would be taken, if it would be suitable that technology would proceed and be used for
implementation otherwise the team would go through an abridged version of the process to find
a better technology for the job.

Figure 12: Design Approach

Shown above is a basic outline of the full process of deciding a specific technology at a broad
perspective. Each of these steps included a more in depth process, for example: at the
identifying technologies stage, the team generated their own ideas for technologies that could
be used. These ideas were compiled based on prior knowledge of suitable technologies,
programming languages, and frameworks that could apply as well as searching various
potential solutions over the internet; that would fit with the requirements identified in the
previous task. From that point on the design would then be based around the technology that
was evaluated to be the best suited for the task.

One design decision that had an in-depth process towards which technology would be used and
how it would then work into the software as a whole was that of the backend/algorithm section.
The task that needed to be completed was deciding on the programming language for the
backend and algorithm section of this project that would then be able to fill those roles while
connecting to the already ideated frontend.

Some of the evaluating criteria that was then setup was based on the project requirements that
would connect to this broad area of topic as well as the focus of deciding a language that would
have other potential benefits. The process of languages that could fit these criteria was
compiled by the team given prior knowledge/experience and research towards a language that

SDMAY19-22 34

would align with the needs laid out that the team was not as familiar with. The top five
languages that were identified to have potential satisfaction were as follows: Python, C, Java,
Golang, and Ruby.

All of these languages met the requirement that the software should be a well-known technology
with documentation and the expectation to be maintained for at least the next ten years. These
languages also had the added benefit that at least one member of the team already had working
experience of the identified languages.

Python had the benefit of being the language used for the executable program that the web
application was going to be based off of, but was ultimately removed from the list because of the
requirement for processing times of the algorithm. Python as well as Java were identified as
having potential of being too slow for the calculation process, and would then not be able to
meet the processing time target.

After breaking it down to just C, Golang, and Ruby. C was a language that every team member
had experience in, but was ultimately eliminated from the running along with Ruby because
those that were familiar with Golang and research into the language determined it to be the
more efficient language in most instances. Meeting the processing time requirement was what
ultimately led to the decision of Golang with the thinking that it would enable the most efficient
algorithm and backend.

At this point the remaining decisions for the backend/algorithm portion of the project were simply
how it would be set up in a broad sense and how it would connect to the frontend. For more
detail on the proposed design see section 3.3 Purposed Design.

3.2.3 Decision-Making and Trade-Off

The largest thing that affected our tech stack decisions was speed. Either speed of
development or application speed. This eliminated a few choices right away that, while
extensible and more feature-dense in the end, would take far too much setup and time to get off
the ground.

The other decision was application speed. For that reason we chose a split frontend-backend
that would present as quick of UI as possible and do number crunching as quickly as possible.
For the frontend we landed on React JS because of its pretty and snappy feel and how easily it
would be to display the data, and for the backend we ultimately landed on Go because of its
builtin http server module and its speed. Compiled languages were always going to be the best
choice, and Go had the best http implementation.

A final decision was our requirements for testing, internationalization, and accessibility. React
has some very simple to use and extensible options for all of these requirements and presents
the best options for a good user experience.

SDMAY19-22 35

3.3 Proposed Design
The following includes designs for the primary implementation plan. These designs were
created with the requirements of the project in mind as well as other general usability standards
and visually appealing frontend plans. These designs were used as a guide for the
implementation of the project (see 6. Implementation), and as such there are slight alterations to
the final design.

3.3.1 Design Visual and Description

API & User Interaction Diagram: The following diagram shows the interactions between the
user, UI, and back-end APIs, with respect to time. (FIgure 13: API & User Interaction Diagram)

SDMAY19-22 36

API Diagram: The following diagram shows the API and how it processes requests from the
frontend. Another version of how the API fits in the backend see Software Architecture Diagram
on the next page.

Figure 14: API Diagram

The Auth section of the requests pertain to the account that a user can make/have for the
purpose of creating their own list of presets that would then be usable by other users as well as
themselves. These requests are for registering an account, logging into an account, and
signing out of an account. These requests will then connect to the database for the appropriate
information to read or write.

The Calc section of the requests will call the algorithm of the code which in it has code that will
access the database.

The Presets (with an s) is for accessing any made preset list of cables, so any user can access
those lists. This gets the information off of the database with read permission, and nothing else.

The Preset/id section is for accessing any made preset list id, so that a drop down list can be
viewed by a non-authenticated user by reading the information off of the database.

The Preset section is for users that can create/modify and use a preset list of inputs that will be
written to the database and read off of it.

SDMAY19-22 37

Software Architecture Diagram: The following diagram (Figure 15) shows the large
point-of-view software architecture of the designed software with the major components being
the browser, the server, and the database of cables and ducts.

Figure 15: Software Architecture Design

The browser will be the interaction point for the user, with the UI being the visible components to
the user. The “Cable Diagram Renderer” will take data sent from the algorithm backend and
create the final images to be sent to the user. The “HTTP Client” will then function as the point
of data interchange between the frontend and backend.

The server will be the ISU hosted server running the backend/algorithm functionality of the
software. The “API Controller” will be the data interchange component for the backend taking
the user input and sending results back to the frontend. The “Cable Layout Algorithm” is the
algorithm component that will take the transmitted data and get the results to be sent back to
the frontend. The “Security Controller” will perform any security checks needed, and the “Data
Controller” will perform any access of information to the database.

The database will function as the database that holds any cable information for user presets.

SDMAY19-22 38

UI Mock-Ups:

Figure 16: Overlay for Login screen and Cable Setup Mock-up

This (Figure 16) is the mock-up for what a user would see when setting up a profile for a
company/group of users. First, users log in through an overlay panel shown on the left. It allows
the user to add a cable type/description along with a diameter in a specified measurement all
under a specific profile name. A save and cancel action are also available for the expected
uses during the editing or creation of a cable package profile.

SDMAY19-22 39

Figure 17: Cable Input Selection Mock-up

This (Figure 17) is a mock-up visualization of the web application during the process of inputting
their specifications for a certain query. The preset dropdown allows for the user to choose
which preset to use for available cable types.

As for the primary input section located on the lower left of the screen, the left column (“Cable
Type”) of the input field includes a dropdown where a user can select a cable in the preset they
are using, or to type in a placeholder if desired. The “Diameter” column will automatically be
populated with the correct measurements if the cable type selected has a designated diameter
otherwise the user will fill in the desired diameter for that row of cables. Lastly, the right column
(“Amount”) specifies how many of a certain cable is desired for this iteration of calculations.
Each row is for a different cable type, and rows can be added as the user requires them.

Other input locations that are optional are the “Bore Size Increment” input field, the “Min. Bore
Size” input field, and the email checkbox and input field.

The “Bore Size Increment” field allows a user to specify the outermost bore increment value
when checking for the smallest valid, and largest invalid bore sizes. For example, if the
increment is set to two (inches) and the algorithm determines the smallest outer bore size to be
six from an array of incrementing by two starting from zero (0, 2, 4, 6), then the smallest
minimum is six and the largest invalid is four, and those would be the final images outer bore
size rendered in the results.

SDMAY19-22 40

The “Min. Bore Size” allows a user to provide a minimum bore size for their query meaning that
should the user specify four (inches) then the algorithm will not consider any outer bore size
smaller than four inches, and will go through the default or specified incrementation value from
four.

The remaining optional input fields are concerned with if the results are sent to the user’s email
function as expected. If a user marks the checkbox for “Email me when the results are
available” it will then have the user fill in an email address in the input field for “Email”, and send
an email to the specified account with the results.

Figure 18: Cable Input Selection Mock-up (Filled out)

This (Figure 18) shows a completely filled out query still on the same page of the web
application as Figure 17. After a user has completed the entry of all the desired information
they then can either press the “Submit” button or the “Cancel” button. Doing both what would
be expected. The “Cancel” button would not submit but cancel the query. The “Submit” button
would send the input to the backend, located on the ISU internally hosted server, and run the
inputs through the algorithm to then send the results back to the frontend when this has
completed.

SDMAY19-22 41

Figure 19: Results Page Mock-up

This (Figure 19) is a mock-up of the results page. The main aspect is the visualization of the
calculated maximum bore size with cables packed into it for clear validation proof. The other
visualization that would also show up on this screen is the next smallest bore size (based on
input or default incrementation) showing how one size smaller than the produced valid is not
valid with a list of what cables/ducts push it over into needing the next size larger.

On the top of the screen, there is a “New Project” tab and a “Open Previous” tab. The “New
Project” tab will allow the user to begin a new query from the first step. The “Open Previous” will
temporarily hold the users created run throughs of the process for either reference or going
back to access again for whatever reason they may have.

The “Result ID” is a section that allows users to open a previously created result by putting in
the “Result ID” that will be given to the user upon query completion. This allows the user to
have the ability to go back and look-up results should they have not saved them.

At the bottom of the screen there is a “Share” button that allows users to share the created
results through the supported methods of the web application. Also at the bottom of the screen,
there is a “Export” button that allows users to save the results in the supported methods of the
web application onto their computer.

SDMAY19-22 42

3.3.2 Functionality

The design is intended to operate as an interactive website, which can be accessed by a
modern browser. It will have fields in which a user can input their desired cables, ducts, and
other underground utilities, and additionally, adjust the other parameters of the application.
Once the user is satisfied with the selections they have made, the application will then perform
the calculations and return a generated image and properties of the bore as well as how the
cables will fit in the bore. Additionally, the application will return the next smallest bore size and
display what cables would not fit should that bore size be used. The user may then opt to
generate a link that can be shared to the results of the application.

We believe that the current design will satisfy the requirements laid out by the requirements
documentation. While our design is still in the planning and research phase, and the UI is only
in mockup, we believe that all requirements can be met.

3.3.3 Areas of Concern and Development

One concern being that a potential primary user that has input on the projects requirements (i.e.
Alliant Energy) has shown desire to create a more specialized tool that would be specific to their
system, but the main goal of this project is to create a generalized version of the predecessor
that will be open and available to whoever wishes to use it. In light of this, we have developed a
few possible solutions that we are looking into to resolve them. Such as for the generalization
of Alliant Energy’s requests and making it so the data can be exported to various different file
types for usability.

A second concern we have identified is with software running the algorithm and concerns that it
will not perform to the standards we have set for it, as in it may not run at speeds desired,
slowing down the process. To avail this, we have considered rewriting the algorithm into a
compiler language instead and even look into refactoring the code to further improve the speeds
it can perform at.

Finally, we realized that scaling such a program to be correctly output and interacted with on a
small screen such as a phone screen. This could have multiple ways to go about it, however
we have not finalized which way this application will follow. Our current idea for it is to output a
static picture at the top with details below, in contrast to having it on the side. Additionally using
a front end structure that can determine screen size and adapt accordingly will be useful to
assist in this.

3.3.4 Technology, Frameworks, and Libraries

This project will involve a variety of technologies, frameworks, and libraries given the need to
develop a web application with a frontend, backend, and database. Along with the software
development is the necessary project documentation, scheduling, and planning (as for
communication see 7.5 Team Contract). A generalized list of these with the used version
number and a brief explanation for their use is included in this section.

SDMAY19-22 43

For the Web Application Project:

React, version 17.0.2: Frontend development of the web application to create the UI/UX that will
run on a web browser, gather input from users, show results of user run queries, and connect to
the backend.

Golang, version 1.17: Backend and Algorithm development of the application that will handle the
calculation of maximum valid duct sizes, connecting to the database content, and sending
results to the frontend.

PostgreSQL, version 14.1: Database management system to handle the various cables and
ducts that a user can choose from during the input stage of using the application.

Prettier, version 9.0.0: Software standardization to ensure consistency of the code that is written
between the team during the development process.

GitLab, version 14.4.2: Software development and sharing tool that will enable effective code
merging and task management.

JSON, version 2020-12: Data-interchange formatting between the frontend and backend.

Google Drive, online version: Project documentation creation and editing that will enable full
team collaboration and ease of use toward being actively updated. Will be able to store all
created documents in a single access point with complete version control.

From the Existing Program:

Python, version 3.9.5: Primary programming language of the existing program that the web
application will be based on. The conversion of this language into either React or Golang will be
necessary to create the web application.

Matplotlib, version 3.4.2: Visualization library used to create an output of the existing algorithms
results. This will occur on the frontend of the web application.

NumPy, version 1.20: Mathematics library used in association with the programming language
Python to create results from the algorithm.

SDMAY19-22 44

4 Testing
With this project being purely a software development project, testing will occur on exclusively
the software side. That being said, it is recognized that testing will be extremely important for
ensuring the validity of the code that each developer will produce, and subsequently ensuring
that requirements are appropriately met. The tools that will be used will vary depending on the
area of the development (frontend, backend, etc), but will be along the lines of software testing
tools of the various languages and frameworks that are being utilized for the development of the
project.

The testing strategy that will be utilized was agreed upon by the team, and uses modern
practices of software testing in a development environment in accordance with existing software
testing standards. These various testing components will be performed alongside the agile
development methodology chosen for the development process of this project.

4.1 Unit Testing
We are going to utilize two testing frameworks for our separate codebases. First, for the
client-side application, we will be using the built-in testing framework “react testing library” with
“jest.” This gives us the ability to test individual React components, custom hooks, functions,
and mock up items between them as necessary for as much granular testing as possible. It can
simulate individual unit tests as well as simulate user input and firing of events to give us some
UI/UX testing as well, although not as much as would be preferred by QA engineers, for
example.

The server side application will use the builtin go testing framework. This will give us a lot of
control over what is tested server side, so as not to go so far into testing where we are just
testing the library. Individual functions, components, and modules will all need to be thoroughly
tested and have those tests passed in order to be accepted into the main branch,

The unit tests will be a baked in component of the overall CI/CD pipeline as well. Should any
tests fail or act not according to the testing criteria in the automated tests, it will not be accepted
into the main branch. While developers are given liberties as to the specifics of their testing,
one popular example the team is encouraged to follow is the ZOMBIE testing methodology.

4.2 Interface Testing
In this software system, we have two primary interfaces: the User Interface (UI), and the
Application Programming Interface (API). The UI is the web-based interface that users can
interact with to perform tasks as described in the requirements. It can take in commands and
display the results to the users. The API communicates between the front-end and the
back-end, sending users requests generated by the UI to the algorithm, and sending completed
results back to the UI to be rendered and displayed.

SDMAY19-22 45

To test the API, automated tests such as the Unit Tests described in section 4.1 Unit Testing and
integration testing as described in section 4.3 Integration Testing can be performed periodically,
after each code push. This testing will ensure that the API is compliant with the requirements
and prevent regression defects as development continues.

Similar to the API, the User Interface will also implement automated tests that are executed
periodically. In addition, we will use manual testing to ensure that the user experience
requirements from our clients are met as well. Each component’s design will include a section
that describes a UI test case, in the form of a step-by-step checklist. During testing, the
validator will interact with the UI as described in the test case, and verify that the UI’s behavior is
exactly as expected. This combination of automated and manual testing will ensure that the
interface meets the requirements.

4.3 Integration Testing
There are a few integration paths for our design. One is between the front end and back end,
which we have designed to be via an API layer. There are also integration paths with how our
software will interact with the hosting system, which we may also test, to ensure that the
application is functioning correctly and is accessible to the users. For testing the integration
between the front and back end, we have a few options on tools.

One such option is using a headless testing browser environment, such as Selenium. This will
hook into a headless browser and run a full battery of tests against our entire application. This
will ensure that the frontend and backend are producing expected results and are integrating
together successfully and that they are producing the correct output to the user.

Another option we have is a test kit that hooks into the frontend, and triggers it to make requests
to the backend, just as a real user would. This software may be partially custom written by us to
best hook into our application. We will most likely be modifying a unit testing toolkit to make
these requests.

All these tests will be run automatically within the confines of the CI/CD pipeline. We will
probably be utilizing Docker or a system like it to spin up databases and other system
dependencies so that we can test in an environment as close to production as we can. This will
also allow us to create new databases and tables as we need, without disrupting the production
environment.

4.4 System Testing
System testing is a level of software testing that validates the complete and fully integrated
software, and as such will occur after the process of unit, interface, and integration testing.
Considering the plan is for the unit tests to be extensive and required for eventual merging into

SDMAY19-22 46

the main branch program, this series of testing should occur with relative ease. Especially when
considering that the integration testing will automatically ensure that these tests will properly run
and integrate when the code base is sent to CI/CD pipeline on the project's GitLab. Due to this,
the process of 4.5 Regression Testing will become a part of the system testing as it will pertain
to the connecting of various developers code into the single system, and will thus require testing
alongside general system testing for ensuring existing functionality in the system is not broken.

From all of this, the system testing will expect that all existing functionality will not be broken by
new integration as well as testing the new functionality that the code being merged into the
system remains from its individual testing.

As far as what will be required for this, will be the same as the previous sections (4.1 Unit
Testing, 4.2 Interface Testing, and 4.3 Integration Testing). There should not be any need for
additional tools for system testing as it will ensure the overall functionality of the system after
merging of new functionality. This will mean that additional testing may be required to show full
functionality of the system from end-point to end-point. Ideally, to ensure existing developer
bias, this series of test creation and testing will be performed by someone other than the
developer of what is being merged into the system.

In order to connect this to the requirements, any additional tests will be focused on the
functionality of the requirement that the task being merged into the main system is supposed to
create.

4.5 Regression Testing
We will be using gitlab’s integrated CI/CD tools to verify that when a new push to a feature
branch or master is made, the automated test suite to verify that functionality is intact will run,
and should any errors occur, gitlab will either prevent the merge, if the request is made against
master, or let the committer know the errors if it is a push to a feature branch. This way we will
avoid cases where a new feature merging into the rest of the project potentially breaks the
master or production branches, and feature branches will have assurance that all required
features are working in the grand scheme of the project rather than just one developer’s
computer.

Ideally, there will be no issues with integrating new features into previous main builds of the
project, however should a feature break one or more parts of the master branch, GitLab’s CI/CD
suite will be able to tell us what exactly is conflicting or breaking what so we don’t need to guess
at any point. The most basic regression test for us should see that the algorithm itself is not
interfered with in any way, as it is the heart of what will make this project successful. Next,
ensuring the backend calls to that algorithm stay functional will be most important as the app
has no functionality without being able to get results out of the algorithm itself. Next most
important is being able to interact with the backend through the user interface in the frontend,
since without a human interface, no one will be able to use our application. These critical

SDMAY19-22 47

features should always be tested for functionality with new builds and new features before those
new features are merged into the rest of the project.

4.6 Acceptance Testing
For our acceptance testing, there are three primary steps. Should any step result in actions to
be taken, the process will start again. The first step is the full implementation testing by the
team. This is to verify that all the features we wanted to implement are completed and ready to
move on to the next step. We will iterate through our requirements document and check that
each requirement is being met. Step two would be a very similar process of going through the
requirements documentation, but this time with our client Matt Wymore. In doing this, we can
get their perspective on if the requirements are being met to the degree that they expect. The
final iteration is then meeting with Alliant Energy, our industry reference. We repeat the
process of going through the requirements, showing off the implementation of those
requirements, and getting a consensus on if the requirements have been met. Additionally,
should new requirements be requested, we can evaluate the feasibility of the new
requirements, and either go back and implement them, or discuss alternatives.

4.7 Security Testing
As we develop the application, along with the server side and client side components, it is
important that we take into account the application of modern security procedures. As such, for
components like the frontend web application, we will only send information that is explicitly
needed. As we configure and set up the server side of the application, we will conduct a
penetration test to ensure that access cannot be obtained beyond those who are authorized to
have it. Additionally, prior to application publishing, removing any unnecessary accounts that
may linger on the server and closing any ports that are unnecessarily open.

4.8 Results
The main method for ensuring compliance with the requirements of this project will be from the
overall method of the project development - not just testing. This method is an agile
methodology where a developer will take various tasks/issues per sprint that focus on a certain
functionality that may be a full requirement, or a part of an overarching requirement. Once
reaching the testing phase, compliance will be further ensured by having comprehensive testing
that will be required to succeed for integration into the main branch of code. This testing will
involve everything from checking validity of code to evaluating if the new code can correctly
perform the specific task that it was intended to based on the requirement(s) that it was
intended to address.

SDMAY19-22 48

Figure 20: Testing Suite Procedure

Shown above (Figure 20: Testing Suite Procedure), is a visual representation of the project's
testing process. It begins with unit testing of the code that is being developed which will repeat
as long as there is more functionality to be tested. Subsequently, once all unit tests have been
completed and passed by the new code, the developer will check if either security or interface
testing will be needed (as not all functionality will). After that has been completed and
successfully passed, integration testing will occur. After successfully testing the integration of
the new code it will be merged into the main branch where system and regression testing will
occur in unison. At this point, if more functionality is to be added the cycle will repeat with the
creation of the newer code for the remaining functionality. Otherwise the project will be
complete and reach the acceptance testing phase. This will all occur with the agile
development methodology meaning that the unit to system/regression testing phases will repeat
many times, and at least once for each added functionality.

4.8.1 Unit Testing Results
The unit tests were incorporated into the CI/CD process, meaning that for any push of code it
was standard to have all written tests to pass with any code changes that may have occurred.
This created a realistic development environment, and led to all unit tests being passed tests.

Subsequently, the results of the unit tests aided in rooting out any small problems that may have
existed in developed code, and was a large focus on having good tests with a good coverage of

SDMAY19-22 49

functional code. The unit tests were key in rooting out code errors that may have been
overlooked otherwise.

The backend algorithm code specifically had a multitude of unit tests, for testing logic and
mathematical functionality, that reduced the chance of having an error or fault that would be
difficult to detect when running through the algorithm process as a whole.

The total runed tests are many and varied to include specifics in this document, but they can all
be found in the code base of the project.

For any additional information see (4.1 Unit Testing).

4.8.2 Interface and Security Testing Results
Interface testing as well as security testing are important parts of software testing, and from the
develop strategy used in this project, are on the same stage of process. These tests both
happen on the local side first prior to integrating new code into the project, and only under
applicable circumstances.

Interface testing was done in a variety of methods as it pertains to API interfacing and UI. To
test the API automated tests were written as well as some basic usability testing via using the
frontend were used. The results aided in identifying differences in schema between the JSON
data being interchanged between the frontend and the backend. The UI testing took on the
form of some basic unit tests for frontend components that the user interacts with, and testing
done by a developer simulating the various frontend processes. The results allowed the finer
details to be corrected and improved upon which made the testing extremely helpful for
improving the user experience.

As for security testing, when applicable being anytime that code was written that would send
information back to the backend. Aside from keeping the software being used up-to-date, the
means to test for security was to limit the interchange of data to only what was needed. When it
was needed tests were made/taken in order to identify the potential weaknesses that would
need to be addressed by the code in some manner. The results of not identifying major security
risks was expected, but beneficial to have tests ensuring that the code was safe.

For any additional information see (4.2 Interface Testing, 4.7 Security Testing).

4.8.3 Integration Testing Results
For the integration between the frontend and the backend as well as the code and the hosting
system, integration testing. This testing was set up completely to be done automatically via the
CI/CD pipeline, in order to properly ensure that any code being pushed can integrate correctly
with either the frontend or backend via the api or from the code base to the hosting server.

The results of the integration testing, as many automated pipelined tests, went relatively
unnoticed most of the time. It was when there was a problem that a push would finish the

SDMAY19-22 50

pipeline with an indicator of a failure that would contain information on what failed. This allowed
for the team to easily identify and remedy any error found in the code.

For any additional information see (4.3 Integration Testing).

4.8.4 System and Regression Testing Results
System and regression testing results are combined because the way this project handled them
was a sort of combined form where they occurred with the CI/CD process when a merge
occurred. Meaning, that whenever a developer had gone through the proper process for getting
their newly developed code merged into another branch or main, automatic testing setup in
advance would occur.

The process for getting a merge completed is: developing new code for an issue, testing that
code, pushing it to a specific branch, requesting a merge, getting approval for the merge,
initiating that merge, and then the merge process with the CI/CD testing that would include the
system and regression testing. This ensured that there would not be an issue with newly
merged code causing a problem with the system, or negatively affecting the pre-existing code
functionality.

The results of this testing were largely successful, without the need for correction - as the code
was already extensively tested before reaching this stage in the development. That said,
development was not without the occasional problem that showed code unexpectedly conflicted
with the existing code, or the detection of code that could have had negative effects on the
system.

For any additional information see (4.4 System Testing, 4.5 Regression Testing).

4.8.5 Acceptance Testing Results
The acceptance testing was done with multiple meetings with the client/advisor and prospective
users as the development team started to reach its completed form.

The first meeting showed the basic features that were setup and expected of the project. The
results of this testing session were received well and successful with some slight alterations
noted.

The second series of meetings were for the purpose of demonstrating what had changed, and
the final results of the project. The results of the final round of acceptance testing showed that
all implemented features met expectations and functioned as intended both from design and
user interaction standpoints.

For any additional information see (4.6 Acceptance Testing).

SDMAY19-22 51

5 Professionalism
This section is with respect to the paper, “Contextualizing Professionalism in Capstone Projects
Using the IDEALS Professional Responsibility Assessment”, International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012.

5.1 Areas of Responsibility
One of the codes of ethics, related to this project, (IEEE, ACM, SE) were chosen and then
added onto the table provided in, “Contextualizing Professionalism in Capstone Projects Using
the IDEALS Professional Responsibility Assessment”. A new column was added upon this table
at the end with a brief description of how the selected code of ethics connected to each area of
responsibility next to the National Society of Professional Engineers (NSPE) column.

The chosen code of ethics to base the evaluation off of was Software Engineering (SE) code of
ethics, and the resulting table can be found below. The resulting description is based on the SE
code of ethics for each of the seven professional responsibilities of the table.

The seven areas of professional responsibility in the assessment instruction with an additional
column of the SE code of ethics outlined in “Computer Science and ACM Approve Software
Engineering Code of Ethics”, Computer Society Connection pp.84-88, 1999.

Area of
responsibility

Definition NSPE Canon SE code of ethics

Work of
Competence

Perform work of
high quality,
integrity, timeliness,
and professional
competence.

Perform services
only in areas of their
competence; Avoid
deceptive acts.

Accept responsibility for
one's own work while only
approving software that is
safe, meets requirements,
passes appropriate tests
without negative effects
on quality of life.

Financial
Responsibility

Deliver products and
services of
realizable value and
at reasonable costs.

Act for each
employer or client as
faithful agents or
trustees.

Ensure products,
manufactured and
modified, meet the
highest of professional
standards possible to
ensure the utmost
financial results.

Communication
Honesty

Report work
truthfully, without

Issue public
statements only in an

One must accept
responsibility for their

SDMAY19-22 52

deception, and are
understandable to
stakeholders.

objective and truthful
manner; Avoid
deceptive acts.

work while not knowingly
working in an illegal or
unethical manner.

Health, Safety, and
Well-Being

Minimize risks to
safety, health, and
well-being of
stakeholders.

Hold paramount the
safety, health, and
welfare of the public.

Approve software that
won’t diminish quality of
life, harm the
environment, and
diminish quality of life
while being fair and
supportive to colleagues.

Property
Ownership

Respect property,
ideas, and
information of clients
and others.

Act for each
employer or client as
faithful agents or
trustees.

Keep confidential
information of any client
while ensuring proper
documentation and
evidence of
nonproprietary or breach
of property or ideas.

Sustainability Protect the
environment and
natural resources
locally and globally.

Do not purposefully
accept software that will
harm the environment.

Social
Responsibility

Produce products
and services that
benefit society and
communities.

Conduct themselves
honorably,
responsibly, ethically,
and lawfully so as to
enhance the honor,
reputation, and
usefulness of the
profession.

End products should be
of the highest
professional standard
with proper procedure in
ethics in the development
process with the hope of
also participating in
lifelong learning, and
advance the integrity and
reputation of the
profession.

Table 6: Ethics Table Additions

The SE code of ethics differs from the NSPE code of ethics in each area slightly due to it being
a code based around a more specific area of engineering than the broad area of NSPE. The
following is grouped based on each of the seven professional responsibilities.

For the responsibility “Work of Competence”, the difference between the two codes can be seen
from the more broad perspective of NSPE as it is specifically concerned with engineers

SDMAY19-22 53

performing tasks specific to their training while the SE code is specific to the work of software
engineers.

For the responsibility “Financial Responsibility”, the difference comes from the SE code of ethics
being not just financial responsibility toward employers or clients, but also general use of data
and computer resources that may lead to undue financial burdens.

For the responsibility “Communication Honesty”, there is not a really substantial difference as
the responsibility of communicating honestly to any party involved in any sort of project should
be done without any deception or omission of facts for either code of ethics.

For the responsibility “Health, Safety, and Well-Being”, in a similar way to the communication
honesty responsibility of not really being different in any real important means. It is simply a
more specific statement for the SE code of ethics.

For the responsibility “Property Ownership”, is another responsibility that is not that different
between the two codes as this responsibility is dealing with the respect towards one’s property
and ideas which is consistent across any engineering project. The general conclusion is to
properly act as a trustee of information for all those involved in the project.

For the responsibility “Sustainability”, the NSPE code of ethics was left blank in the original table
of the seven responsibilities making this section a clear difference between the two codes. As
for the SE code of ethics, the responsibility breaks down to any code that one develops should
not actively have a negative impact on the environment.

For the responsibility “Social Responsibility”, is the final responsibility and is relatively similar
between the NSPE code of ethics and the SE code of ethics as they both relate to the purpose
of creating quality work at the highest level that will be done in a lawful manner while advancing
the integrity of the profession.

5.2 Project Specific Professional Responsibility Areas
This section includes a brief explanation of the applicability and the degree to which the team
has fulfilled each of the seven areas of professional responsibility that can be found defined
above in the table of section 5.1 Areas of Responsibility.

“Work of Competence”: As this means, “Perform work of high quality, integrity, timeliness, and
professional competence”, this clearly applies to the team’s project in a professional context.
This is because we want to be able to meet these attributes in the work that we put in. Our work
should be of a high quality, while still getting completed in a timely manner with the
professionalism that would be expected of us in a real work environment. The team, to this
point, have been performing, in this professional responsibility, really well in getting work done to
the level that would be expected while maintaining a competence towards the professionalism
of how we do so. Giving a rating of either the high end of medium or just in the high degree of
level.

SDMAY19-22 54

“Financial Responsibility”: This responsibility applies to our project closely. The goal for the final
product is to not only save the company time when working with underground cable bore holes,
but also reduce unnecessary spending caused by disagreements between the company and its
contractors. Our project will have this in mind, and maximize the time and financial benefits
through deliberate design decisions. In addition we will also reduce the cost of operating and
maintaining the tool that we create. Our team is performing highly in this category. We have
created a design that fulfills the requirements described above and have considered the cost of
long-term operation as well.

“Communication Honesty”: As we continue developing our project, we have strived to maintain
full clarity on what we are doing and what our objectives are. Doing such keeps everybody
involved well-informed on our decisions. This applies to this project because of the need to
keep everyone informed between the team members, the advisors, clients, and teaching
assistants. The team has successfully managed to maintain excellent communication
throughout the entirety of the project planning and design process up to this point. This has
been done with an instant chat communication method between team members, advisor, and
teaching assistant, along with regular meetings. As well as communication with clients and
other resources through school email with a designed format. As far as the honesty aspect, our
team has been accurately portraying the project information truthfully to all stakeholders, team
members, and everybody else involved .

“Health, Safety, and Well-Being”: Our application will be used to calculate the size of real-world
underground bores and thus how much land will need to be moved to install the cables needed.
By minimizing bore sizes, we reduce the impact on the environment albeit in a relatively small
way. We must ensure that the calculations to determine bore size are correct and can be
relayed to the user effectively so they can apply their estimates.

“Property Ownership”: While there is no physical property, information and ideas are highly
relevant to the scope of our project. Alliant Energy has provided us with insights into their inner
workings, and have trusted us with this. We believe that our team is performing at a high level
to rate it. We have kept all information shared with us to ourselves, and have not distributed or
shared it beyond our circle of which it is relevant. Additionally, we have met with representatives
from their company in order to hear their ideas and tailor our project in order to accommodate,
as their insight has been helpful in understanding the use cases. However, while we asked
about NDA, they only recently got back to us and requested to have IP rights. We are still in
conversation to determine if IP rights are what we want to agree to however.

“Sustainability”: We want to ensure that while our project will not produce any physical products,
we can still be responsible for how many resources we use to host the application on various
servers. While we do not have total control over how the servers themselves hosting this
application will be run, we can ensure that we are not using high-power servers that would be
better suited to heavy computing since our application should require minimal processing power.
This does mean optimizing our code to only run calculations when necessary rather than all the
time to reduce energy consumed by a server processor.

SDMAY19-22 55

“Social Responsibility”: We want to ensure that our project is done to the best of our ability.
Although we still have things to learn in regards to the technology and methodology we chose
for our implementation, we will do it to the best degree possible. We will not be dealing with
confidential or proprietary information, as this is a publicly and freely available tool, available to
anyone who wishes to use it. However with that being said, we will be restricting who can
update the publicly available profiles via an organization admin account to trusted individuals at
said user companies. While this project is not yet complete, we hope the end result will be of
high quality and provide a positive example of the software and computer engineering
professions.

5.3 Most Applicable Professional Responsibility Area
For this section, one area of professional responsibility that is both important to this project and
the team has demonstrated a high level of proficiency in the context of this project. This
includes a description of how this responsibility is important to this project, the ways in which the
team has demonstrated the responsibility in the project, and the impacts that it has led to for the
project.

While there are multiple professional responsibilities areas that the team has performed really
well thus far, one of the most applicable areas would be that of Communication Honesty. The
team has a strong communication system setup for all of the types of communication that needs
to be done. To add to the area of honesty, the information that has been communicated has
been truthful without the intent to deceive, and if there were any uncertainty or
miscommunication the team members would work to remedy the situation.

This has led to the transparency of the work that the team has been doing, and the
effectiveness of the exchange of information has allowed the team to fully figure out project
requirements, scheduling, and all of the necessary design decisions. There have been
difficulties that have occurred during the project that have led to the need for more in depth
communication or extra meetings between appropriate parties. The team’s communication
system and communication honesty has helped to facilitate the alleviation of these difficulties.

SDMAY19-22 56

6 Implementation

6.1 Development Process Abstraction
Following the process laid out in the project plan and the design section of this document as
closely as possible, the development team began by setting up as much of the generalized
framework and functions, setting up the server that will host the tool, followed by the
communication between frontend and backend, and the finer details of the project. As the team
made progress there was close contact between advisor/client, and the prospective user to
properly adjust and redesign as progress was made. This led to some small changes from the
original design, of course, which can be seen in section 1.5 Design Evolution.

Along with the development, as outlined in 4. Testing section, testing occurred in order to ensure
functionality of the code being written. This was extremely important for the algorithm
functionality, all of the math involved, and the visualization of the results; these were some of the
primary components of the core facet of the web tool, and as such needed to work as expected
even under various potential edge cases.

SDMAY19-22 57

6.2 Web Tool Results
Included in this section is the resulting visual/UI side of the project that can be seen and
experienced further on the actual site (linked here: https://ucp-webtool.ece.iastate.edu/).

Figure 21: Landing Page

The landing page for the application. The calculator page’s main purpose is for adding cables to
be considered for a bore calculation, and sending the request to see the generated bore.

Figure 22: Presets Selection Demonstration

Presets allow individual companies to use their own cable specifications for bore generation.
Presets are managed through an account page where each respective company’s cable names
and diameters can be changed.

SDMAY19-22 58

https://ucp-webtool.ece.iastate.edu/

Figure 23: Input Process

Adding cables. Cables all have names and default diameters, though diameter can be changed
if desired, and the amount of each type of cable is also specified here.

SDMAY19-22 59

Figure 24: Mobile UI

The mobile view of the application. One of the main reasons for rebuilding this application as a
web-based tool was mobile compatibility. Completely scalable UI elements allow the app to be
used on devices of any size.

SDMAY19-22 60

Figure 25: Results Imaging

Generated cable bores. The cables selected above are run through our algorithm to determine
what the minimum-radius circle (bore size) is that can enclose all other circles (cables) when
packed together. The render has the list of cable diameters, minimum bore diameter, render
generation time, and a unique result ID so users can retrieve this result later.

SDMAY19-22 61

Figure 26: Help Page Image

The help page. Walks users through how to use the tool’s various features and explains what
different sections of the site are for. Also provides contact information should users need or want
to contact someone at EPRC for help.

Figure 27: Account Page Image

The account page. Shows users their preset and the ability to create new or edit existing cables.
The account changes portion has the functionality to change a password if a user has any need.
Changing the password can be done on this page or when attempting to log in.

SDMAY19-22 62

7 Closing Material

7.1 Discussion
This project, starting in August of 2021 and ending in May of 2022, has the results of a
functional web tool that’s primary component is that of a bore calculator given a set of inputted
cables/bores/circle radii. As in any project, there were changes, delays, unexpected problems,
and the need to be in close contact with all those involved, but this team believes it to have
been a successful endeavor in, “preparing [the team] for entry to the workforce…using skills in
technical writing, project planning, and design reporting”, as well as, “the successful
implementation and demonstration of designs”.

The link to the created web tool can be found on the title page of this document, the GitLab
readme, and here: https://ucp-webtool.ece.iastate.edu/.

7.2 Conclusion
With the content of the previous section (7.1 Discussion) in mind, along with all of the project
plan, design plan, and completed work, we feel that the design and completion of this project
over the last 8 months has given us a new insight into how applications are developed from end
to end. We have also gained valuable knowledge not offered through traditional classes, such
as interaction with an industry client and managing scope based on user feedback.

7.3 References
“Computer Society and ACM Approve Software Engineering Code of Ethics”, Computer Society
Connection Vol. 32, Issue: 10, pp. 84-88, 1999.

“Contextualizing Professionalism in Capstone Projects Using the IDEALS Professional
Responsibility Assessment”, International Journal of Engineering Education Vol. 28, No. 2, pp.
416–424, 2012.

IEEE. IEEE-IEEE Code of Ethics. IEEE.org. Retrieved November 7, 2021 from
https://www.ieee.org/about/corporate/governance/p7-8.html

SDMAY19-22 63

https://ucp-webtool.ece.iastate.edu/

8 Appendices

8.1 Appendix I. [Operation Manual]
This operation manual is for the purpose of using the final product web tool application.
This application can be found by clicking here (https://ucp-webtool.ece.iastate.edu/) and simply
requires a network connection. Upon reaching the landing page, the primary component of the
application will already be open.

The user has the option to immediately begin a new bore calculation by using the “Add Cable”
button and entering and modifying any number of cables. Upon desired configuration, the
“Generate Cable Bore” should be clicked where it will be processed by the backend server to
determine the configuration, at this time, the user would be allowed to enter an email address to
which the results could be emailed to - if desired. Otherwise, the results would be shown below
the UI (shown above) with a unique Result ID number, a time and date that it was rendered at,
and finally the minimum sized bore needed to fit each cable. Additionally, once generated, the
ability to download the result as a pdf and to get a sharable link presents itself for returning to
the generation. There is also the ability to login to a profile, these profiles have preset cable
listings under accounts with the same company or organization.

If the user arrives at the page with a Result ID from a previous bore generation, they can switch
to the “Retrieve Results” tab on the top navigation bar. From there they would enter the number
to view any previously generated results given the id is valid.

Additionally there are two more tabs in the top navigation bar, that being a Help page where the
user can read a quick start guide and a contact link, and finally there is an Account tab, which
when logged in, shows all preset cables defined by the account, the ability to create a new
preset, create a new account with these presets, and finally change the account’s password in
the event that such action is needed.

SDMAY19-22 64

https://ucp-webtool.ece.iastate.edu/
https://ucp-webtool.ece.iastate.edu/

8.2 Appendix II. [Alternative Design Versions]
Though we iterated on our design from the beginning of the school year, fleshing out ideas for
how users will use our application and what technologies we could use to accomplish our goals,
we decided on a design that met our needs fairly early on in the process. This is not to say that
we had other ideas, of course. This section serves as a continuum of 3.2 Design Exploration for
ideas that were briefly considered before more information was gathered to rule them out.

For example, we decided that in order to keep our project lightweight and easy to use, we will
not be implementing a user account system. There was debate on being able to save the
diagrams to a user account, but we have found alternatives that do not require as much
involvement from the user. Instead, a potential stretch goal (2.2 Task Decomposition part 5.3)
Company Admin Account, was created with the idea of having a single account per user group
to add special data sets of cables and bores.

Very early in the design process, before we knew many requirements of our project, we hoped
we could use an AWS-centered approach to build a lightweight application that scaled quickly
and could add features easily. This was ruled out as we found we needed to host our application
on Iowa State servers and the team’s overall lack of knowledge of AWS development meant we
would have needed more time dedicated to learning the tech stack to develop effectively.
Another plan was to port the old Python desktop application to the web and keep the original
function of the app the same. This meant we could rely on the algorithm designed by Professor
Wymore to keep development time for a new algorithm to a minimum, though we would be
limited to the functionality of the original application, which fell short of our intended feature set.

Some more creative design ideas involved using an external tool to do the calculations for us
and simply pass data to the external API through our frontend, though like the idea to use the
Python application this would limit us on what features and data we could add to the algorithm
should we want to change anything (and no such API fulfilled our needs). There was also a brief
design that involved a random number generator to determine bore size, though through
rigorous analysis this was found to be an ineffective solution.

8.3 Appendix III. [Other Considerations]
The most important information that would be classified as other considerations would be the
research that went into developing a fast and as close to correct backend algorithm. An
algorithm for packing unique circles within a circle is a popular computer science problem that
has multiple aspects that need to be considered: ranging from how to orient the interior circles
together, how to orient the interior circles with respect to the outermost circle, and all of the
generalized arrangements. The project’s algorithm attempts to address as much of the problem
as possible while remaining fast and relatively simple.

SDMAY19-22 65

The backend code for the algorithm does this by focusing on arranging the circles in a triangular
orientation that becomes a hexagonal orientation overall which is the commonly held most
efficient packing of circles regardless of the container. An example for this visually, while with
uniform circles, would be that of a sheet of bubble wrap, and again different as those are
oriented for an effective square or rectangular outer packing.

The algorithmic code uses mathematical functions to get the circles placed together correctly
while utilizing a simplified algorithm for how to orient which circle where. For example, it gives
priority to placing the largest circles toward the center and filling the holes with the smaller
circles from the user input. It is far from the most optimal solution, but in a situation where the
algorithm being written is that of NP hard, while remaining fast and effective, its efficiency is
limited.

For more information on circle within a circle packing algorithms there are many scholarly
articles and algorithms written by those whose sole focus of work was to make the most efficient
algorithm possible - people who are smarter than us. Nevertheless, the resultant algorithm
should be enough for this project’s goal.

SDMAY19-22 66

