
Underground Cable Packing Web Tool
Final Report and Design Document

Iowa State University CPRE/CYBE/EE/SE 491
Fall 2021 - Spring 2022

Team Number 19

Professor Mathew Wymore - Faculty Advisor
Jacob Conn - Teaching Assistant

ISU’s Electrical Power Research Center - Client
Alliant Energy - Client

Team Member - Project Leadership Role
Alexander Young - DevOps and System Engineer

Brevin Wapp - Scrum Master
Haadi Majeed - Quality Assurance Engineer

Matthew Hoskins - Team Lead
Nate Tucker - Tech. Lead

Tom Sun - User Experience and Requirements
Quinten Sorice - Client Point of Contact

Team Email: sdmay22-19@iastate.edu
Team Website: http://sdmay22-19.sd.ece.iastate.edu/

Revised 12/05/2021
Version: 1.0.0



Executive Summary

Development Standards and Practices
During this project, many standards and practices were considered to best suit the development
of the project, and some of the most important and planned upon standards to follow are
included here.  For more information on the development standards and practices that this
team’s project group will be following can be found in this document's 1.3 Engineering
Standards section.
For broad standards of professionalism and ethics, that were considered during the design
phase of this project, include: the National Society of Professional Engineers (NSPE) ethics, the
Software Engineering (SE) code of ethics, the IInstitute of Electrical and Electronics Engineers
(IEEE) code of ethics, and the Association for Computing Machinery (ACM) code of ethics.  The
decision to primarily follow the SE code of ethics was made from the consideration that this
project will be a software development project.  For more information on these standards and
ethics see section 5. Professionalism of this document.
The specific standards that this project looked into and will be following during design processes
are listed below with a brief description and expanded upon in section 1.3 Engineering
Standards.

● IEEE 1016: create and maintain software design documentations
● IEEE 830: create a Software Requirements Specification (SRS)
● ISO/IEC/IEEE 29119: software tests defined, operated, and documented properly

For each of these standards the process that this project group will follow can be seen in
various sections of this document.  IEEE 1016 focuses on design documentation which would
be the whole of this document.  IEEE 830 would be the section regarding software
requirements, 1.2 Requirements and Constraints.  ISO/IEC/IEEE 29119 process can be found in
this document’s testing section 4. Testing.

Summary of Requirements
Provided here is a brief summary of this project’s requirements, for more information on these
requirements see section 1.2 Requirements and Constraints. The requirements listed here are
the broad perspective and most significant of the requirements identified by the team and
advisors.

● Final product must be a web application
○ Run on mobile and common browsers

● Must run on ISU server
● Output is a graphical visualization in a portable format
● User input of cables/ducts
● UI must contain ERPC branding

SDMAY19-22 2



Applicable Courses from University Curriculum
Iowa State University courses that contain content applicable to this project would include:

● CPRE 185: Introduction to Problem Solving I
● SPCM 212: Fundamentals of Public Speaking
● COMS 227: Object-Oriented Design
● COMS 228: Data Structures
● CPRE 230: Cyber Security Fundamentals
● CPRE 231: Cyber Security Concepts and Tools
● COMS 252: Linux Operating System Essentials
● COMS 309: Software Development Practices
● CPRE 310: Theoretical Foundations of Computer Engineering
● COMS 311: Introduction to Algorithm Design and Efficiency
● ENGL 314: Reporting, Documenting, and Technical Communication
● SE 317: Introduction to Software Testing
● SE 319: Construction of User Interfaces
● SE 329: Software Project Management
● SE 339: Software Architecture Design
● SE 409: Software Requirements Engineering
● SE 417: Software Testing
● CPRE 421: Software Analysis and Verification for Safety and Security

Knowledge Acquired
The curriculum up to this project has covered a large amount of what this project has and will
require considering the focuses of this project include: a frontend connecting to a server
backend with an algorithm as the primary component (COMS 309, COMS 311, SE 319, etc.),
proper team project documentation (COMS 309, ENGL 314, SE 329, etc.), project planning (SE
329), and team member, advisor, client interaction, and others interaction on a professional level
(SPCM 212, etc.).  All of which has been covered by the curriculum to an extent.
Ultimately resulting in the knowledge being acquired by the team members on this project being
more specifics.  For example: programming in languages and frameworks that were not
specifically covered by a class (Golang), high level code sharing and production management
through GitLab, or proper conversion of existing algorithms to web application versions with a
good level of efficiency.

SDMAY19-22 3



Table of Contents

Executive Summary 2
Development Standards and Practices 2
Summary of Requirements 2
Applicable Courses from University Curriculum 3
Knowledge Acquired 3
Table of Contents 4
List of Figures, Tables, Symbols, and Definitions 6

List of Tables 6
List of Figures 6

0 Team Section 7
0.1  List of Members and Roles 7
0.2  Required Skill Sets for Project 7
0.3  Skill Set Covered by Team 8

0.3.1 Computer Engineering Majors 8
0.3.2 Software Engineering Majors 8

1 Requirements Section 9
1.1  Problem Statement 9
1.2  Requirements & Constraints 9
1.3  Engineering Standards 10

2   Project Plan 12
2.1  Project Management/Tracking Procedures 12

2.1.1 Management Style and Justification 12
2.1.2 Progress Tracking and Management Tools 13

2.2  Task Decomposition 13
2.3  Project Proposed Milestones, Metrics, and Evaluation Criteria 17
2.4  Project Timeline/Schedule 18
2.5  Risks And Risk Management/Mitigation 22
2.6  Personnel Effort Requirements 24
2.7  Other Resource Requirements 27

3  Design 28
3.1  Design Context 28

3.1.1 Broader Context 28
3.1.2 User Needs 29
3.1.3 Prior Work/Solutions 30
3.1.4 Technical Complexity 31

3.2  Design Exploration 31

SDMAY19-22 4



3.2.1 Design Decisions 31
3.2.2 Ideation 32
3.2.3 Decision-Making and Trade-Off 33

3.3  Proposed Design 35
3.3.1 Design Visual and Description 35
3.3.2 Functionality 41
3.3.3 Areas of Concern and Development 41
3.3.4 Technology, Frameworks, and Libraries 41

4  Testing 43
4.1  Unit Testing 43
4.2  Interface Testing 43
4.3  Integration Testing 44
4.4  System Testing 44
4.5  Regression Testing 45
4.6  Acceptance Testing 46
4.7  Security Testing 46
4.8  Results 46

5  Professionalism 48
5.1  Areas of Responsibility 48
5.2  Project Specific Professional Responsibility Areas 50
5.3  Most Applicable Professional Responsibility Area 52

6 Implementation 53

7 Closing Material 54
7.1  Discussion 54
7.2  Conclusion 54
7.3  References 54
7.4  Appendices 55
7.5  Team Contract 55

SDMAY19-22 5



List of Figures, Tables, Symbols, and Definitions

List of Tables
Table 1: Team Member and Role List 7
Table 2: Task Decomposition 13-17
Table 3: Risk Management and Mitigation Numeric Definition 24
Table 4: Personal Effort Breakdown 24-27
Table 5: Project Area Considerations 28-29
Table 6: Ethics Table Additions 48-49

List of Figures
Figure 1: Basic Agile Development Visualization 12
Figure 2: Gantt Chart by Major Task View 18
Figure 3: 1.0 Project Planning & Defining 19
Figure 4: 2.0 DevOps & Tech. Setup 19
Figure 5: 3.0 Software Design & Functional Design Verification 20
Figure 6: 4.0 Redesign Algorithm 20
Figure 7: 5.0 Data Tables Setup 20
Figure 8: 6.0 Backend Construction 21
Figure 9: 7.0 UI Construction 21
Figure 10: 8.0 Development Testing Suite 21
Figure 11: 9.0 UAT & Deployment 22
Figure 12: Design Approach 32
Figure 13: API & User Interaction Diagram 35
Figure 14: Software Architecture Design 36
Figure 15: Overlay for Cable Setup Mock-up 37
Figure 16: Cable Input Selection Mock-up 38
Figure 17: Cable Input Selection Mock-up (Filled Out) 39
Figure 18: Results Page Mock-up 40
Figure 19: Testing Suite Procedure 47

SDMAY19-22 6



0 Team Section

0.1 List of Members and Roles

Team Member Leadership Role

Alexander Young DevOps and System Engineer

Brevin Wapp Scrum Master

Haadi Majeed Quality Assurance Engineer

Matthew Hoskins Team Lead

Nate Tucker Tech. Lead

Tom Sun User Experience and Requirements

Quinten Sorice Client Point of Contact

Table 1: Team Member and Role List

0.2 Required Skill Sets for Project
This section outlines a basic set of skills that would be required by the team in order to complete
the set requirements for this project.

1. Formal project documentation creation and upkeep
2. Project communication between fellow team members, advisors, clients, and other

roles
3. Project planning for timing, work division, and resources
4. GitLab code sharing and protocol allowing smooth development of the project
5. Functional project design process enabling quality software development
6. Algorithm analysis and testing ensuring quick and valid results
7. UI/UX development that will create appealing and easy-to-use web applications
8. Software testing encompassing unit, interface, security, integration, system, regression

and user acceptance testing
9. React frontend communication to Golang backend on server
10. Golang Backend on server communication to React frontend
11. Visual output creation from mathematical results
12. Secure development for web application; preventing unauthorized access of data
13. Database creation and management of potential user input options
14. Software documentation creation that effectively communicates the software

functionality
15. Server-side setup and upkeep for hosting application during development

SDMAY19-22 7



0.3 Skill Set Covered by Team
Included, separated by major, is a summary of the skills that each team member has that is
applicable to the development of this project (skills are only listed in the event that it matches a
required skill set for the project listed in section 0.2 Required Skill Sets for Project).

0.3.1 Computer Engineering Majors
Alexander Young: 1. Formal Project Documentation, 2. Project Communication, 3. Project
Planning, 4. GitLab Code Sharing and Protocol, 5. Functional Project Design, 7. UI/UX
Development, 8. Software Testing, 9. React Frontend, 10. Golang Backend, 11. Visual Output
Creation, 12. Secure Development, 13. Database Creation and Management, 14. Software
Documentation, 15. Server-Side Setup and Upkeep

Haadi Majeed: 1. Formal Project Documentation, 2. Project Communication, 3. Project Planning,
4. GitLab Code Sharing and Protocol, 5. Functional Project Design, 6. Algorithm Analysis and
Testing, 7. UI/UX Development, 8. Software Testing, 9. React Frontend, 12. Secure
Development, 13. Database Creation and Management, 14. Software Documentation, 15.
Server-Side Setup and Upkeep

Tom Sun: 1. Formal Project Documentation, 2. Project Communication, 3. Project Planning, 4.
GitLab Code Sharing and Protocol, 5. Functional Project Design, 7. UI/UX Development, 8.
Software Testing, 12. Secure Development, 13. Database Creation and Management, 14.
Software Documentation, 15. Server-Side Setup and Upkeep

0.3.2 Software Engineering Majors
Brevin Wapp: 1. Formal Project Documentation, 2. Project Communication, 3. Project Planning,
4. GitLab Code Sharing and Protocol, 5. Functional Project Design, 7. UI/UX Development, 8.
Software Testing, 9. React Frontend, 11. Visual Output Creation, 14. Software Documentation

Matthew Hoskins: 1. Formal Project Documentation, 2. Project Communication, 3. Project
Planning, 4. GitLab Code Sharing and Protocol, 5. Functional Project Design, 6. Algorithm
Analysis and Testing, 7. UI/UX Development, 8. Software Testing, 14. Software Documentation

Nate Tucker: 4. GitLab Code Sharing and Protocol, 5. Functional Project Design, 6. Algorithm
Analysis and Testing, 7. UI/UX Development, 8. Software Testing, 9. React Frontend, 10.
Golang Backend, 11. Visual Output Creation, 12. Secure Development, 13. Database Creation
and Management, 14. Software Documentation, 15. Server-Side Setup and Upkeep

Quinten Sorice: 1. Formal Project Documentation, 2. Project Communication, 3. Project
Planning, 4. GitLab Code Sharing and Protocol, 6. Algorithm Analysis and Testing, 8. Software
Testing, 10. Golang Backend, 14. Software Documentation, 15. Server-Side Setup and Upkeep

SDMAY19-22 8



1 Requirements Section

1.1 Problem Statement
As many companies with the need to distribute cabling, on a large scale, are shifting to more
underground cabling, in order to better withstand environmental disasters as well as other
potentially damaging occurrences, the need for software to assist in these actions have become
even more necessary.

To that end, Iowa State University's Electrical Power Research Center (EPRC) and Professor
Mathew Wymore have requested an expanded web tool version of an existing executable
program with the addition of new features and improved primary functionality such as: enhanced
algorithm, mobile support, and ease of use.  This web tool will also allow for more readily
available functionality being an application available on EPRC's website for immediate use.

The tool's primary use comes from streamlining the billing process for underground cabling
companies and contractors with a known user being Alliant Energy.  Other expected uses, from
user interaction, include the assessment of proper bore sizing, project based material
calculation, ease of optimal calculation, and ease of project specific utility file creation.

1.2 Requirements & Constraints
The following is a list of project requirements and constraints that have been identified by the
team, the faculty advisor, and an industry client representative.  These requirements are broken
down into various categories with clear notation stating constraints.  All of these requirements
are taken into consideration for the design and implementation of this project.

Functional Requirements:

● Processing time targets, assuming a test case of one dozen cables/ducts or less
○ < 20 seconds if user must wait for results on page (constraint)

■ Stretch goal: < 5 seconds (constraint)
○ < 10 minutes if user can be emailed results asynchronously (constraint)

● Front end must run on common browsers, including desktop Chrome, Firefox, Safari and
Edge (as time allows)

● Must be a web application
● Back end must run on target infrastructure (ISU’s ETG servers)
● Capable of sharing recent results via URL
● Output a graphical visualization of the final packing, and of the attempted packing in the

outer diameter one size smaller, in a portable format (PDF, PNG, JPG, etc.)
● Correct results must be achieved, with correct defined as:

SDMAY19-22 9



○ All given cables fit in resulting outer diameter
○ All given cables will NOT fit in outer diameter one size smaller
○ Stretch goal: formally prove algorithm is correct

● Configurable:
○ Set of predefined cables/ducts
○ Set of outer diameters to check
○ Unit of measurement (in or cm)

● Stretch goal: export results into downloadable spreadsheet that could have more
information added to it

● Stretch goal: ability to plan out multiple sections of cable run at the same time
● Stretch goal: Setup admin accounts for companies and specific groups for the purpose

of setting a group profile of tables and settings

Qualitative Aesthetics Requirements:

● The (User Interface) UI needs to use Iowa State University (ISU) Electric Power
Research Center (EPRC) branding

● For the output - Cables should be packed to the center of the circle in this visualization

Resource Requirement:

● The use of Iowa State owned servers for hosting our application

UI Requirements:

● Clean and intuitive UI
● UI is functional and usable on mobile Chrome and Safari
● Stretch goal: improvements on visualization on invalid duct sizing

Software Requirements:

● Web stack must be well-known and documented technologies expected to be
maintained for at least ten years (constraint)

1.3 Engineering Standards
The following are the engineering standards that the team has researched and implemented for
the creation of this software development project.  As there is not any hardware testing or
maintenance to be implemented by the team, there are not any standards with the focus on
hardware.  The standards below are concerned with the software development, testing, and
documenting of this project.

SDMAY19-22 10



Create and maintain a software design description or design document as indicated by Institute
of Electrical and Electronics Engineers (IEEE) standard IEEE 1016.  This document will be used
for recording design information, addressing various design concerns, and communicating that
information to the design’s stakeholders in the form of data design, architectural design,
interface design, and procedural design.

Create a software requirements specification (SRS) set forth by IEEE 830.  This will entail a
document that lays out functional and nonfunctional requirements.  The requirements document
will be updated as needed as the project progresses, and the requirements evolve.

When making software based tests of any component of this project, following the standard set
by Internal Organization for Standardization (ISO), International Electrotechnical Commision
(IEC) in ISO/IEC/IEEE 29119 any tests will be properly defined, operated, and documented.
This will entail creating sound tests that will be recorded in documentation.

1.4 Intended Users and Uses
Our primary users would be the users of the original cable packing application, our secondary
users would be those involved in the process of packing and installing underground cable
packages that have a use and access to this software, and anyone else that would be involved
in or interested in the management of underground cable packing would be our tertiary users.

Alliant Energy and Iowa State University’s Electric Power Research Center (EPRC) being the
clients of the project; act as the primary users of the resulting software.  Along with the
secondary users of underground cable contractors, and anyone with access to the web tool that
would want to use the product acting as the tertiary users of the resulting project.

Our application is designed to act as a standard for the cable packing industry to remove
guesswork and create consistency. Our primary users would be able to reference our tool to
calculate a consistent price based upon the cables involved that shows both sides how the
calculation was made.  Additionally, a by-product of showing the cable packing is that
contractors would be able to determine the best fit for arranging the cables before they lay them
down.

SDMAY19-22 11



2 Project Plan

2.1  Project Management/Tracking Procedures

2.1.1 Management Style and Justification

Being completely a software development endeavour, this project’s goal is to create a
functioning and stable web tool.  It is best suited to the agile management style because it will
allow for stable and tested development that can have requirements fulfilled and improved upon
without the risk of excessive planning or scope creep.

The project management style that the team has adopted is an agile project management flow
style.  This is due to a variety of reasons, including: our group's ability and knowledge to
effectively and efficiently create software with this type of workflow, members ability to take lead
in time management tasks toward development, and the general approach towards software
development that involves iterable improvement.

See above (Figure 1: Basic Agile Development Visualization) is a basic visual representation of
the development process in a clockwise order starting from “Planning” and ending at “Merge”.

SDMAY19-22 12



2.1.2 Progress Tracking and Management Tools

For this project, our team will make use of a number of tools and are all documented as follows.

Tools regarding produced elements: first, GitLab will be used for team collaboration in producing
stable software, as well as document progress and tasks related to the software development of
the project.  Second, Google Drive will be used for other produced materials - primarily along
the lines of documents and presentations.

Time scheduling and management devices: first, a Google Calendar will be used to plan out all
meetings and due dates not related to code development.  Second, a project Gantt chart will be
created and utilized to properly manage all project deliverables and software based milestones.

As for communication methods: first, a structured Discord server will be used for immediate
communication between team members, teaching assistant (TA) Jacob Conn, and Professor
Mathew Wymore.  Second, project group email (through school email) will be used for
communication to other parties such as: Alliant Energy representatives, Iowa State University’s
(ISU’s) Engineering Technology Support (ETS), ISU’s Electronics and Technology Group (ETG),
and ISU’s Electric Power Research Center (EPRC).  Lastly, a Webex meeting room will be
established for any meetings that the project team will be hosting.

2.2  Task Decomposition
Basic Task Decomposition with numerous subtasks per broad realized task listed below with
expected dependencies and clear numbering system for this project.

1. Project Planning & Defining
1.1. Team dynamic planning

1.1.1. Begin team communication
1.1.2. Setup primary communication channels between team members and

advisors (TA Jacob Conn, and Professor Mathew Wymore)
1.1.3. Setup primary communication channels with all other connected parties

(Alliant Energy, ETS, ETG, EPRC)
[Dependent on 1.1.2]

1.1.4. Assign leadership roles among team members
[Dependent on 1.1.2]

1.2. Develop Requirements
1.2.1. Meet with professor Mat Wymore
1.2.2. Meet with client: Alliant Energy

[Dependent on 1.2.1]
1.2.3. Develop requirements documentation

[Dependent on 1.2.1, 1.2.2]

SDMAY19-22 13



1.2.4. Determine engineering standards to follow in software development for
this project
[Dependent on 1.2.3]

1.3. Project Plan Instantiation
1.3.1. Documentation setup
1.3.2. Document breakdown team meeting

[Dependent on 1.3.1]
1.3.3. Finalize original Project Plan document - living document for when the

need for improvements, or alterations
[Dependent on 1.3.1, 1.3.2]

1.4. Software stack planning
1.4.1. Determine specific software stack
1.4.2. Get familiar with tech stack - Typescript React and Go languages

[Dependent on 1.4.1]
1.4.2.1. Perform individual practice to familiarize members with unique

syntax
1.4.3. Create basic proof of concept for general functionality plans

1.4.3.1. Sending information from back to front for image generation
1.5. Project Merge and Pull Request (PR) Protocol

1.5.1. Team initialization of the preliminary process of getting new code
accepted
[Dependent on 1.3.3]

1.5.2. Limits on number of team members approval for a single PR
[Dependent on 1.5.1]

1.6. Continuous Documentation Upkeep / Technical Writing
1.6.1. Requirements Document changes when goals change

[Dependent on 1.2]
1.6.2. Project Plan and Gantt Chart updating

[Dependent on 1.3]
1.6.3. Software documentation as newly accepted PR’s occur

[Dependent on 1.5]
2. DevOps & Tech Setup

[Dependent on 1.4]
2.1. Initialize project website
2.2. Set up CI/CD (Continuous Integration/Continuous Deployment) pipeline

2.2.1. Choosing the technologies that best integrate with our software.
2.2.2. Implementing the chosen technologies and verifying they will continue to

work for the 10 rated years of project lifetime.
2.2.3. Testing the chosen technologies to ensure they deliver correct results.

2.3. Set up deployment environments
[Dependent on 2.2]

2.3.1. Testing the chosen technologies on the deployment servers to ensure that
deployments go smoothly

2.3.2. Testing the technologies to ensure they will continue to operate in the
deployment environments even after host and software updates.

SDMAY19-22 14



2.4. Set up individual team member work environment
[Dependent on 1.4]

3. Software Design & Functional Design Verification
[Dependent on 1.2]
3.1. Create User Interface (UI) Mock-Ups

[Dependent on 1.2]
3.1.1. Update and Improve UI Mock-Ups

3.2. User Experience (UX) testing
[Dependent on 3.1]

3.3. Final design verification with clients and managing professor
[Dependent on 3.2]

4. Redesign Algorithm
4.1. Go through mathematical processes to verify effectiveness of current algorithm
4.2. Redesign to work from the inside out of the duct

[Dependent on 4.1]
4.3. Convert to a compilable programming language for speed purposes

[Dependent on 4.2]
4.4. Prove mathematical algorithm - stretch goal

[Dependent on 4.3]
5. Setup Data Tables

5.1. Render
5.1.1. Id
5.1.2. List of Cables
5.1.3. List of Cable positions
5.1.4. Creation Date

5.2. Cable
5.2.1. Id
5.2.2. Label
5.2.3. Color? Arbitrary for display purposes
5.2.4. Diameter

5.3. Company Admin Account (Stretch Goal)
5.3.1. Single account per company or specific group of users
5.3.2. Allow updating of associated selection profile
5.3.3. Profiles will be open to admin and non-admin users
5.3.4. Creation of account design

6. Backend Construction
[Dependent on 2.]
6.1. Implement HTTP requests

6.1.1. Insert, delete, and read - no need for update
6.2. Convert/manage algorithmic results to transferable format

[Dependent on 4.3]
6.2.1. Send format to frontend to be drawn
6.2.2. Send results to specified email (if requested)

6.3. Configure web server to load balance/distribute requests to different
microservices

SDMAY19-22 15



6.3.1. Choose web server, the choice will motivate a lot of API design choices
6.3.2. Install and enable on the server provided by ISU

[Dependent on 2.]
6.4. Admin accounts handling (Stretch Goal)

[Dependent on 5.3]
6.4.1. Security of every account
6.4.2. Update corresponding profile tables and settings

6.5. Calculate multiple sections of cable run at a given time (Stretch Goal)
6.6. Export results into a semi-formatted spreadsheet (Stretch Goal)

7. UI Construction
[Dependent on 3.]
7.1. Input desired duct and cable specifications that will be run through the algorithm

[Dependent on 6.2]
7.2. Receive backend results and convert to graph drawing/expected output

[Dependent on 6.2]
7.3. Include EPRC required branding

7.3.1. Communicate with Professor Mathew Wymore and EPRC about attaining
necessary branding for the website

7.4. Selection of company or specific group profile settings and tables (Stretch Goal)
[Dependent on 6.4]

7.5. Input for calculating multiple sections of cable run at a given time (Stretch Goal)
[Dependent on 6.5]

7.6. UI improvement to visualizing invalid duct size (Stretch Goal)
7.6.1. Show “invalid” wires overlaid the “invalid” duct size
7.6.2. Visually alter color of “invalid” overlay

[Dependent on 7.6.1]
8. Development Testing Suite

8.1. Unit testing being a part of team PR protocol will occur with continuous software
development
[Dependent on 1.5]

8.2. Interface testing of software for any UI in production
[Dependent on 3.]

8.3. Security Testing for applicable software after initial development
8.4. Integration testing of software produced at sprint finalization stages

[Dependent on 4.0, 6.0, 7.0]
8.5. System & Regression Testing with integrated software for each merge to main

code branch
[Dependent on 8.4]

For more detailed information on testing tasks see document section 4.0 Testing

9. UAT & Deployment
9.1. Internal acceptance testing

[Dependent on 8.]
9.2. Demo and testing with clients

[Dependent on 9.1]

SDMAY19-22 16



9.2.1. Demo with Professor Wymore
9.2.2. Demo with Alliant

9.3. Final production deployment
[Dependent on 9.3]

Table 2: Task Decomposition primary task enumeration and summary:  1.0 Project Planning and
Defining, 2.0 DevOps and Technology Setup, 3.0 Software Design and Functional Design
Verification, 4.0 Redesign Algorithm, 5.0 Data Tables Setup, 6.0 Backend Construction, 7.0
User Interface Construction, 8.0 Development Testing Suite, 9.0 User Acceptance Testing and
Deployment.

Task Decomposition version number: 0.4.0

2.3  Project Proposed Milestones, Metrics, and Evaluation
Criteria
Milestones

1. Protocols, Technologies, and Requirements have a team consensus.
2. Git is configured with CI/CD and individual work environments are set up.
3. Mockups are verified by client, professor, and TA.
4. Algorithm must produce the correct result within 20 seconds.
5. Frontend and backend can successfully communicate.
6. Application must pass all unit tests and produce expected results.
7. Application must be deployed on the Iowa State server.

Evaluation

For each task that will be represented as an issue in Git, they will be assigned an effort value of
the expected amount of time required to complete each issue. In our Git Kanban style board, we
can visually see how many issues for each milestone have been completed, and how many are
left. This allows us to not only see how close we are to a milestone, but also to track individual
progress.

SDMAY19-22 17



2.4  Project Timeline/Schedule
The following is the teams’ original Gantt chart.  It includes: tasks, substasks, who each task is
assigned to, the current tasks’ progress, the start date, and the end date.  The start date is the
current recommended day in which the team or those assigned to the specific tasks should
begin based on dependencies and due dates.  Some tasks are given ample time to demonstrate
their complexity, and expected time requirements.

There are a few tasks that are ongoing throughout most of the project.  These tasks are
continuous documentation (technical documents maintenance, and software documentation),
and the continuous unit testing of code as software for both proof of concept and final project
are created.

Each section on the Gantt chart is the major task derived from 2.2 Task Decomposition with the
various subtasks making up each different colored section.  All known deliverables are therefore
included in the chart in the form of tasks.  Tasks that are associated are shown to be so in either
being in the same major task section or through the excel gantt chart calculation of not having
start days before ending dates of dependent tasks.

All date information is shown at the top of the excel sheet, which has all tasks on a single gantt
chart, in relation to the project with a start date of August 30, 2021 (Week 1).

Figure 2: Gantt Chart by Major Task View

Seen above (Figure 2), is a generalized version of the gantt chart to the nine major tasks.  More
information can be found below in each individual major task gantt chart view.

SDMAY19-22 18



This zoomed out section of the project gantt chart is task Figure 3: 1.0 Project Planning &
Defining (shown above).  This section continues to span the weekly schedule as it includes the
upkeep of various documents relevant to the project.  It began on week one of the planner and
continues from there with a variety of tasks that can be seen more closely in 2.2 Task
Decomposition.

Task Figure 4: 2.0 DevOps & Tech. Setup (shown above), is the early planning, staging, and
setup of technology and CI/CD pipelining.

SDMAY19-22 19



Task Figure 5: 3.0 Software Design & Functional Design Verification (shown above), will involve
a few tasks dependent on each other in some form that will allow for the planning for the
eventual UI of the final software project.

For task Figure 6: 4.0 Redesign Algorithm, is a math focused major task that will need to occur
early on in order to properly ensure the current Python code can be verified, and converted to fit
the projects’ needs.

Task Figure 7: 5.0 Data Tables Setup (shown above), is a short major task that will be done in
order to ensure all possible data points for entry are stored and available to the user input.

SDMAY19-22 20



Task Figure 8: 6.0 Backend Construction (shown above), involves the long development of all
the backend components to this software project.  It starts after final design approval, and proof
of concept programming.

Task Figure 9: 7.0 UI Construction (shown above), will begin at a later point after proof of
concept software has been constructed, as well as, general design given approval.

As for task Figure 10: 8.0 Development Testing Suite (shown above), what is shown here is the
ending of the testing suite that starts with the software development and ends with the
development completion, and includes Unit, Interface, Security, Integration, System, and
Regression testing.

SDMAY19-22 21



The last major task, Figure 11: 9.0 UAT & Deployment, occurs at the end of the project with final
testing and software fixes to be completed prior to final deployment.  As testing will be occurring
throughout the project ideally this will prove very efficient.

2.5  Risks And Risk Management/Mitigation
Each major task that was identified in 2.2 Task Decomposition section is broken down
individually for what risks could potentially occur along with an evaluation on the likelihood, and
what the plan to mitigate these potential risks during the project development process.  A table
reference is listed below for each individual evaluation type.  As this is an Agile project, risks
and risk mitigation will be associated with each sprint.

1. Project Planning & Defining
- Misunderstanding requirements

- Unlikely, Catastrophic: Not properly understanding what our client is asking could
mean building an application that is not useful or does not fit their needs. We will
need to meet (and have been meeting) with our client to fully understand what
they are looking for and how we can deliver an app that fits their needs.

2. DevOps & Tech set up
- Mismanagement of setup

- Possible, Negligible: If something in our virtual machine setup ends up being
wrong, there is little hassle in getting the error fixed or configuration changed to
resolve our problem.

3. Software Design & Functional Design Verification
- Architectural problems

- Rare, moderate/major: A major flaw with our architecture could result in problems
throughout our project, so it will be paramount to select an architecture that will fit
our needs before starting development

- Wireframe issues

SDMAY19-22 22



- Unlikely, negligible: If our wireframes for design verification are not to the spec
our client specifies, we will simply need to change them to fit requirements before
implementing their design in the full application.

4. Redesign Algorithm
- Mathematical Error

- Rare, Major/catastrophic: An error in the calculations regarding the cable-fitting
algorithm would result in delivery of incorrect results and the plethora of problems
that delivering incorrect calculations to a client would entail.

- Mitigation: Checking our algorithm results against the original application and
against mathematically sound equivalent theorems.

- Optimization
- Likely, negligible: A low-consequence risk with redesigning an algorithm is that it

is not as efficient or optimized as it possibly could be, so there could be a chance
to reduce latency with a highly-optimized algorithm.

5. Setup Data Tables
- Incorrect Table configuration

- Unlikely, Minor: If a table for storing results or information is configured
incorrectly, then a mitigation would be making a change in the database to
accurately reflect our data, though going unchecked this could result in the
mishandling of data storage.

6. Backend Construction
- Improper data treatment and storage

- Unlikely, Moderate: The worst outcome that can happen with a poorly built
backend is returning incorrect data, which can mean inaccurate results and
possibly a mischarge to a client. Ensuring that our backend returns the correct
information and in a timely manner will be important as we build the application.

7. UI Construction
- Confusing UI

- Rare, Minor/moderate: If users cannot understand how to use the app, they will
not be able to get the information they want out of it. It will be important for us to
perform user acceptance testing so we can gauge how intuitive and easy to
understand our application front end is.

- Dysfunctional UI
- Rare, Minor: If the UI is so poorly built that it either does not work or cannot give

results, that would be frustrating as the user. A dysfunctional UI is hard to miss
when using proper testing techniques, so this should be a very rare risk to occur.

8. Development Testing Suite
- Lack of comprehensive tests

- Unlikely, Major: With incomplete testing, there is a chance that edge cases in
how our app is used could go unnoticed which would be frustrating for users that
encounter them. Or edge case calculations could turn out wrong, and missing
them would mean the possibility of incorrect charging of clients for bore sizing.

- We will have to ensure that our testing methodology is thorough and we know the
results we are looking for.

SDMAY19-22 23



- Incorrect testing validation
- Unlikely, Major: If tests run on the application are configured incorrectly or give

false positives/negatives, there is a chance that an error would go unnoticed.
- We will have to ensure that our testing methodology is thorough and we know the

results we are looking for.
9. UAT & Deployment

- Inaccurate Results
- Rare, Moderate: Should our user testing come back inconclusive or yield

inaccurate results, then we would have a harder time improving the usability of
the application should there be something substantially wrong with the design.

Consequence ->
Likelihood \/

Negligible:
1

Minor:
2

Moderate:
3

Major:
4

Catastrophic:
5

Almost Certain: 5 5, Moderate 10, High 15, Extreme 20, Extreme 25, Extreme

Likely: 4 4, Moderate 8, High 12, High 16, Extreme 20, Extreme

Possible: 3 3, Low 6, Moderate 9, High 12, High 15, Extreme

Unlikely: 2 2, Low 4, Moderate 6, Moderate 8, High 10, High

Rare: 1 1, Low 2, Low 3, Low 4, Moderate 5, Moderate

Table 3: Risk Management and Mitigation Numeric Definition

2.6  Personnel Effort Requirements
We have a seven-person team.  As a result, the tasks that require individual effort of every team
(such as meetings and validations) will be scaled up accordingly to reflect total personnel effort.
These evaluations are listed in table form with the task name, current estimated hours required,
and a brief explanation of resultant estimation.

Task Name Est. hrs Explanation

Begin Team Communication 3.5 Half-hour each to set up communication channels

Set up communication with
advisors

7 Half-hour long meeting each to meet with Jacob
Conn and Mathew Wymore

Set up communication with
external stakeholders

17 2-hour long meetings (total) to meet with external
stakeholders. 3 hours for email communications

SDMAY19-22 24



Assign leadership roles 7 1 hour long team meeting

Requirements - Wymore
meeting

7 2 x half hour long meetings

Requirements - Alliant
Energy

14 2 x hour long meetings

Requirements Document 15 1 hour team meeting + 1 hour individual work
time + time to proof-read and submit assignment

Engineering Standards 14 Half hour team meeting + half hour individual
work

Project Plan Set Up 14 2 hour individual work time

Project Plan Task Breakdown 7 1 hour long meeting

Finalize Project Plan 10.5 1 hour individual work and half hour meeting to
finalize the document

Determine Software Stack 21 1 hour individual work and 2 hour team meeting

Get Familiar with Tech Stack 60 8 hour for each person, with some additional time

Tech Stack PoC 40 Basic stack set up, should be fairly simple

Project PR Standards
Meeting

14 2 hour long meeting

Continuous Documentation
and Technical Writing
Up-keep

175 1 hour per-person for 25 weeks

Initialize Project Website 10 Infrastructure is already set up, so the team just
need to construct the html pages

CI/CD Pipeline Set Up 15 Creating initial pipelines and integrate with Gitlab,
some learning may be required

Set Up Deployment
Environment

20 May involve meetings with IT services, set up
VM/server

Set Up Individual Work
Environment

28 4 hours per-person, since some
learning/experimenting may be required

Create UI Mock-Ups 80 Includes time to learn mock-up tools and creating

SDMAY19-22 25



iterations of mock-ups

UX Testing 20 Include time to construct tests, meeting times with
stakeholders and compiling data

UI Mock-Up Verification 14 2 hour long meeting with clients

Verify Current Algorithm 15 Time for getting familiar with the tool and
extensive testing

Redesign Algorithm 40 Includes time for development and testing

Convert Programming
Languages

15 Includes time for development and testing in new
language

Mathematical Proof of
Algorithm

40 Some research and information seeking may be
required

Set Up DataBase 15 Infrastructure should be already set up

Create Data Table - Render 4 Includes time to test created table

Create Data Table - Cable 4 Includes time to test created table

Backend Construction -
HTTP

100 Includes time to develop and test all functions

Backend Construction -
Transferable format

50 Some Prototyping may be required

UI Construction - Inputs 50 Some Prototyping may be required

UI Construction - Visualize
results

100 Prototyping and some research into visualization
tools required

UI Construction - EPRC
Branding

40 Adding styles/icons to the constructed software
shouldn’t take too long

Unit Tests 200 Should be done alongside development,
estimated 1 hours per week per person

SDMAY19-22 26



Integration Testing 100 Includes time for extensive test and making any
fixes/adjustments

Internal Acceptance Testing
(IAT)

14 2 hour meeting to review all aspects of the
application

Demo and User Acceptance
Testing (UAT)

14 2 hour meeting to review all aspects of the
application

Final Production
Development

60 Includes time to deploy and fix any last minute
issues. Includes some time for monitoring after
deployment

Table 4: Personal Effort Breakdown

For this current estimation, this would evaluate to 1,474 hours that would be split evenly
between the team of seven people.  This would make it about 210.5 hours per team member
over the course of two regular length school semesters. These numbers are subject to
revaluation as the project progresses.

2.7  Other Resource Requirements
As stated previously, this project is completely software based, and was not provided a budget
making the total amount of resources small to begin with.  Work hours from the team and its
partners will be required for the project's completion, but can be found in section 2.6 Personnel
Effort Requirements for the team directly.

Aside from these resources, the only other resource requirement for this project is an Iowa State
University server that will be hosting the web tool which will be negotiated and set up in
conjunction with ETS.

SDMAY19-22 27



3  Design

3.1  Design Context

3.1.1 Broader Context

The broader context of this design problem is situated around the concept of converting an
executable program that exists for the purpose of making the transition between aboveground
wiring (specifically electrical in nature) into an underground cabling setup.

The communities that this project is being designed for can be broken down into two entities
being those in the electrical community that would be involved in boring of underground cabling,
and the other community would be representatives of the professor client and EPRC.  The
communities that would be affected by this design would be those that will utilize the resultant
software for determining overall bore sizes of the underground cabling.  These communities will
be affected purely on their usage of the web tool for determining proper bore size without any
knowledge other than that of what wiring will need to be buried.

The societal need that this project addresses, is the need for easily accessible software for
determining overall bore size of given wiring input that is an accurate representation of what the
correct bore results should be.  The expected use will be for the purpose of pricing and
acquisition of appropriate amounts of wiring, meaning that the societal needs will be focused in
that area specifically.

List of relevant considerations related to the project in each of the following areas:

Area Description Examples

Public health,
safety, and
welfare

A welfare connection between the
project would be the incentive of
easing the overall planning process
for moving wiring underground to
prevent powerlines from being
affected by weather and causing
damage or injury.

Reduces the possibility of
having improper ducting/boring
sizes making the move to
underground wiring more stable
of a wiring option.

SDMAY19-22 28



Global, cultural,
and social

The values and practices of the
project and the process for the
project would not be any realm that
would cause concern regarding any
affected communities (Iowa State
University EPRC, Potential users).

This project is a web tool for
specific calculations and
visualizations.  The process of
creation and subsequent usage
will follow programming
standards for ease of use and
user acceptability.

Environmental An indirect impact created by this
project would be, since it enables
an ease of underground cable
construction, the amount of
tampering with top level earth
would change as well as the
amount of existing above ground
cabling.

This would imply an increase in
undergrounding boring for
laying underground cabling, and
maintaining said cable.  The
other effect would be less
vertical above ground cabling
structures that would either
obstruct natural elements or
become potential debris.

Economic As the final project web tool is to be
used in a planning and financing
sense by potential clients, this
project would have the ability to
save labor and reduce human
error.  The only expense of the
project would be by ISU for
maintaining the code and server
hosting the program.

This would mean that there
would be a small cost to the
hosting user (ISU), and a free
tool for calculations for all other
users that can ensure accurate
planning of wire/duct sizes and
corresponding amounts.

Table 5: Project Area Considerations

3.1.2 User Needs

List of Users:

The primary users of this project: ISU’s EPRC acting as hosts and eventual software controllers,
primary client groups consisting of companies with underground cabling needs (specifically,
Alliant Energy)

SDMAY19-22 29



The secondary users of this project: various contractors that would be working with either a
primary user or another outside party, with the ultimate goal of setting up underground cable
packages.

The tertiary users of this project would be every other user of the final product as it will be an
openly available web tool with association to ISU’s EPRC.

Individual User Needs:

The primary user, in regards to ISU’s EPRC, requires a web based software that will be able to
complete some basic wiring and bore size functions because an existing executable program
was requested, by the other subcategory of primary users, to be implemented as an openly
sharable program.

The other primary users need a program that can be openly available while easily and efficiently
calculating optimal wire package size that can be shown as a visual representation with proof of
optimal measuring.  This is for the purpose of being able to correctly predict the sizing and
amount of wires and ducts for purchasing, and to appropriately assess each individual jobs
pricing for contractors.

The secondary users group need a way to have easy access to the algorithm without having to
obtain the existing executable software from EPRC to prevent property violations, so that this
group can confirm pricing with the primary users as well as gain the ability to create their own
calculations.

The tertiary users group needs a way to gain access to quality software that can clearly show
the results of circular objects embedded inside other circular objects because this could be a
complicated mathematical problem that would be made simple from this software that is already
being created for the use of the primary and secondary groups.

3.1.3 Prior Work/Solutions
A previous example of a solution that fulfills the same need as our project has been made at
Iowa State, namely the Python-based desktop application created by our professor contact
Mathew Wymore, however the Python app has some shortcomings.  The Python application
works well enough in that it retains a simple interface and can give accurate results quickly but
lacks portability (as a static desktop application) and has no online connectivity.  The web
version of the application we intend to build this year will open the door for additional features
and would be more user-friendly to a wide range of clients that may not want to set up a desktop
application to get an accurate cost calculation for laying underground cables.  A web version
would also allow for the exporting of results in a more streamlined fashion compared to a
screenshot of the Python application’s input and output.

SDMAY19-22 30



3.1.4 Technical Complexity
The design of this project will not simply entail the porting of the existing Python application into
a webpage; there will be an analysis and redesign of the algorithm that determines cable best-fit
in a given diameter pipe which will have to be verified against existing mathematical models, a
new interface that can interact with our algorithm though a webpage, and the addition of new
features like sharing results through links, storing results for future reference, and in the future
offer mobile browser support, something the Python application cannot currently offer at all.

To implement such updates and improvements, we will have to build an updated model of the
existing cable packing tool’s algorithm to ensure optimal performance and accuracy.  The
algorithm will then need to have an interactive front-end, back-end, and database to allow users
to interact with the app, retrieve results, and store/lookup previous calculations respectively.
While existing technologies will aid us in building the structure for this application, such as
JavaScript libraries to give us more front-end functionality or backend frameworks to allow faster
querying of the algorithm, there are no plug-and-play solutions on the market that would fulfill
the same goals as us building this tool ourselves.

3.2 Design Exploration

3.2.1 Design Decisions

Below is a list of some key design decisions that the team has made in relation to the solution
that we have devised.  The project is purely a software development project making a clear limit
to software based decisions.  It should be noted that the software will be hosted on an ISU
server, and decisions related to said server have been made together with standard
implementation and technology in mind.

1. We decided that in order to keep our project lightweight and easy to use, we will not be
implementing a user account system.  There was debate on being able to save the
diagrams to a user account, but we have found alternatives that do not require as much
involvement from the user.  Instead, a potential stretch goal (2.2 Task Decomposition
part 5.3) Company Admin Account, was created with the idea of having a single account
per user group to add special data sets of cables and bores.

2. After the initial meeting with a representative from the expected user (and non-primary
client), Alliant Energy, it became clear that a variety of features they had envisioned were
too disparate from the originally planned project end-goal put forth by ERPC and
Professor Wymore.  The original response that the team went with was to hold off on
configuring the design of the project to fit these proposed functionalities, and to continue
with the original vision that was created after requirements talks with the primary client

SDMAY19-22 31



representative of Professor Wymore.  Moving forward in the design process we took into
account Alliant Energy’s ideas to build upon the planned features and requirements in
order to accommodate their hopes for the project while making sure the focus was still
on the original project vision.  Many stretch goals for this project (featured in section 1.2
Requirements & Constraints) come from some of the additional functionality that Alliant
Energy expressed interest in.

3. We were initially open to multiple technologies as there are not many external
requirements when it came to technology.  However, because of our familiarity with
React and its broad applicability, we decided to use React for our project.

3.2.2 Ideation

The process of exploring potential design decisions was a multistep procedure that involved the
identification of the project or tasks requirements, followed by identifying technologies,
programming languages, and/or frameworks that could fulfill these requirements.  After that step
the team would come together and decide on a technology to move forward with (after weighing
the pros and cons of each option.  This would then lead to testing to ensure that the decided
technology would be able to accomplish the requirements.  At that point, one of two actions
would be taken, if it would be suitable that technology would proceed and be used for
implementation otherwise the team would go through an abridged version of the process to find
a better technology for the job.

Figure 12: Design Approach

Shown above is a basic outline of the full process of deciding a specific technology at a broad
perspective.  Each of these steps included a more in depth process, for example: at the
identifying technologies stage, the team generated their own ideas for technologies that could
be used.  These ideas were compiled based on prior knowledge of suitable technologies,
programming languages, and frameworks that could apply as well as searching various
potential solutions over the internet; that would fit with the requirements identified in the
previous task.  From that point on the design would then be based around the technology that
was evaluated to be the best suited for the task.

SDMAY19-22 32



One design decision that had an in-depth process towards which technology would be used and
how it would then work into the software as a whole was that of the backend/algorithm section.
The task that needed to be completed was deciding on the programming language for the
backend and algorithm section of this project that would then be able to fill those roles while
connecting to the already ideated frontend.

Some of the evaluating criteria that was then setup was based on the project requirements that
would connect to this broad area of topic as well as the focus of deciding a language that would
have other potential benefits.  The process of languages that could fit these criteria was
compiled by the team given prior knowledge/experience and research towards a language that
would align with the needs laid out that the team was not as familiar with.  The top five
languages that were identified to have potential satisfaction were as follows: Python, C, Java,
Golang, and Ruby.

All of these languages met the requirement that the software should be a well-known technology
with documentation and the expectation to be maintained for at least the next ten years.  These
languages also had the added benefit that at least one member of the team already had working
experience of the identified languages.

Python had the benefit of being the language used for the executable program that the web
application was going to be based off of, but was ultimately removed from the list because of the
requirement for processing times of the algorithm.  Python as well as Java were identified as
having potential of being too slow for the calculation process, and would then not be able to
meet the processing time target.

After breaking it down to just C, Golang, and Ruby.  C was a language that every team member
had experience in, but was ultimately eliminated from the running along with Ruby because
those that were familiar with Golang and research into the language determined it to be the
more efficient language in most instances.  Meeting the processing time requirement was what
ultimately led to the decision of Golang with the thinking that it would enable the most efficient
algorithm and backend.

At this point the remaining decisions for the backend/algorithm portion of the project were simply
how it would be set up in a broad sense and how it would connect to the frontend.  For more
detail on the proposed design see section 3.3 Purposed Design.

3.2.3 Decision-Making and Trade-Off

The largest thing that affected our tech stack decisions was speed.  Either speed of
development or application speed.  This eliminated a few choices right away that, while
extensible and more feature-dense in the end, would take far too much setup and time to get off
the ground.

The other decision was application speed.  For that reason we chose a split frontend-backend
that would present as quick of UI as possible and do number crunching as quickly as possible.

SDMAY19-22 33



For the frontend we landed on React JS because of its pretty and snappy feel and how easily it
would be to display the data, and for the backend we ultimately landed on Go because of its
builtin http server module and its speed.  Compiled languages were always going to be the best
choice, and Go had the best http implementation.

A final decision was our requirements for testing, internationalization, and accessibility.  React
has some very simple to use and extensible options for all of these requirements and presents

the best options for a good user experience.

SDMAY19-22 34



3.3 Proposed Design
The following includes designs that have been implemented, tested, attempted, and mocked-up.
These designs were created with the requirements of the project in mind as well as other
general usability standards and visually appealing frontend plans.

3.3.1 Design Visual and Description

API  & User Interaction Diagram: The following diagram shows the interactions between the
user, UI, and back-end APIs, with respect to time. (FIgure 13: API & User Interaction Diagram)

SDMAY19-22 35



Software Architecture Diagram: The following diagram (Figure 14) shows the large
point-of-view software architecture of the designed software with the major components being
the browser, the server, and the database of cables and ducts.

Figure 14: Software Architecture Design

The browser will be the interaction point for the user, with the UI being the visible components to
the user.  The “Cable Diagram Renderer” will take data sent from the algorithm backend and
create the final images to be sent to the user.  The “HTTP Client” will then function as the point
of data interchange between the frontend and backend.

The server will be the ISU hosted server running the backend/algorithm functionality of the
software.  The “API Controller” will be the data interchange component for the backend taking
the user input and sending results back to the frontend.  The “Cable Layout Algorithm” is the
algorithm component that will take the transmitted data and get the results to be sent back to
the frontend.  The “Security Controller” will perform any security checks needed, and the “Data
Controller” will perform any access of information to the database.

The database will function as the database that holds any cable information to user presets.

SDMAY19-22 36



UI Mock-Ups:

Figure 15: Overlay for Login screen and Cable Setup Mock-up

This (Figure 15) is the mock-up for what a user would see when setting up a profile for a
company/group of users. First, users log in through an overlay panel shown on the left.  It allows
the user to add a cable type/description along with a diameter in a specified measurement all
under a specific profile name.  A save and cancel action are also available for the expected
uses during the editing or creation of a cable package profile.

SDMAY19-22 37



Figure 16: Cable Input Selection Mock-up

This (Figure 16) is a mock-up visualization of the web application during the process of inputting
their specifications for a certain query.  The preset dropdown allows for the user to choose
which preset to use for available cable types.

As for the primary input section located on the lower left of the screen, the left column (“Cable
Type”) of the input field includes a dropdown where a user can select a cable in the preset they
are using, or to type in a placeholder if desired.  The “Diameter” column will automatically be
populated with the correct measurements if the cable type selected has a designated diameter
otherwise the user will fill in the desired diameter for that row of cables.  Lastly, the right column
(“Amount”) specifies how many of a certain cable is desired for this iteration of calculations.
Each row is for a different cable type, and rows can be added as the user requires them.

Other input locations that are optional are the “Bore Size Increment” input field, the “Min. Bore
Size” input field, and the email checkbox and input field.

The “Bore Size Increment” field allows a user to specify the outermost bore increment value
when checking for the smallest valid, and largest invalid bore sizes.  For example, if the
increment is set to two (inches) and the algorithm determines the smallest outer bore size to be
six from an array of incrementing by two starting from zero (0, 2, 4, 6), then the smallest
minimum is six and the largest invalid is four, and those would be the final images outer bore
size rendered in the results.

SDMAY19-22 38



The “Min. Bore Size” allows a user to provide a minimum bore size for their query meaning that
should the user specify four (inches) then the algorithm will not consider any outer bore size
smaller than four inches, and will go through the default or specified incrementation value from
four.

The remaining optional input fields are concerned with if the results are sent to the user’s email
function as expected.  If a user marks the checkbox for “Email me when the results are
available” it will then have the user fill in an email address in the input field for “Email”, and send
an email to the specified account with the results.

Figure 17: Cable Input Selection Mock-up (Filled out)

This (Figure 17) shows a completely filled out query still on the same page of the web
application as Figure 16.  After a user has completed the entry of all the desired information
they then can either press the “Submit” button or the “Cancel” button.  Doing both what would
be expected.  The “Cancel” button would not submit but cancel the query.  The “Submit” button
would send the input to the backend, located on the ISU internally hosted server, and run the
inputs through the algorithm to then send the results back to the frontend when this has
completed.

SDMAY19-22 39



Figure 18: Results Page Mock-up

This (Figure 18) is a mock-up of the results page.  The main aspect is the visualization of the
calculated maximum bore size with cables packed into it for clear validation proof.  The other
visualization that would also show up on this screen is the next smallest bore size (based on
input or default incrementation) showing how one size smaller than the produced valid is not
valid with a list of what cables/ducts push it over into needing the next size larger.

On the top of the screen, there is a “New Project” tab and a “Open Previous” tab.  The “New
Project” tab will allow the user to begin a new query from the first step.  The “Open Previous” will
temporarily hold the users created run throughs of the process for either reference or going
back to access again for whatever reason they may have.

The “Result ID” is a section that allows users to open a previously created result by putting in
the “Result ID” that will be given to the user upon query completion.  This allows the user to
have the ability to go back and look-up results should they have not saved them.

At the bottom of the screen there is a “Share” button that allows users to share the created
results through the supported methods of the web application.  Also at the bottom of the screen,
there is a “Export” button that allows users to save the results in the supported methods of the
web application onto their computer.

SDMAY19-22 40



3.3.2 Functionality

The design is intended to operate as an interactive website, which can be accessed by a
modern browser. It will have fields in which a user can input their desired cables, ducts, and
other underground utilities, and additionally, adjust the other parameters of the application.
Once the user is satisfied with the selections they have made, the application will then perform
the calculations and return a generated image and properties of the bore as well as how the
cables will fit in the bore.  Additionally, the application will return the next smallest bore size and
display what cables would not fit should that bore size be used.  The user may then opt to
generate a link that can be shared to the results of the application.

We believe that the current design will satisfy the requirements laid out by the requirements
documentation.  While our design is still in the planning and research phase, and the UI is only
in mockup, we believe that all requirements can be met.

3.3.3 Areas of Concern and Development

One concern being that a potential primary user that has input on the projects requirements (i.e.
Alliant Energy) has shown desire to create a more specialized tool that would be specific to their
system, but the main goal of this project is to create a generalized version of the predecessor
that will be open and available to whoever wishes to use it.  In light of this, we have developed a
few possible solutions that we are looking into to resolve them.  Such as for the generalization
of Alliant Energy’s requests and making it so the data can be exported to various different file
types for usability.

A second concern we have identified is with software running the algorithm and concerns that it
will not perform to the standards we have set for it, as in it may not run at speeds desired,
slowing down the process.  To avail this, we have considered rewriting the algorithm into a
compiler language instead and even look into refactoring the code to further improve the speeds
it can perform at.

Finally, we realised that scaling such a program to be correctly output and interacted with on a
small screen such as a phone screen.  This could have multiple ways to go about it, however
we have not finalized which way this application will follow.  Our current idea for it is to output a
static picture at the top with details below, in contrast to having it on the side.  Additionally using
a front end structure that can determine screen size and adapt accordingly will be useful to
assist in this.

3.3.4 Technology, Frameworks, and Libraries

This project will involve a variety of technologies, frameworks, and libraries given the need to
develop a web application with a frontend, backend, and database.  Along with the software
development is the necessary project documentation, scheduling, and planning (as for
communication see 7.5 Team Contract).  A generalized list of these with the used version
number and a brief explanation for their use is included in this section.

SDMAY19-22 41



For the Web Application Project:

React, version 17.0.2: Frontend development of the web application to create the UI/UX that will
run on a web browser, gather input from users, show results of user run queries, and connect to
the backend.

Golang, version 1.17: Backend and Algorithm development of the application that will handle the
calculation of maximum valid duct sizes, connecting to the database content, and sending
results to the frontend.

PostgreSQL, version 14.1: Database management system to handle the various cables and
ducts that a user can choose from during the input stage of using the application.

Prettier, version 9.0.0: Software standardization to ensure consistency of the code that is written
between the team during the development process.

GitLab, version 14.4.2: Software development and sharing tool that will enable effective code
merging and task management.

JSON, version 2020-12: Data-interchange formatting between the frontend and backend.

Google Drive, online version: Project documentation creation and editing that will enable full
team collaboration and ease of use toward being actively updated.  Will be able to store all
created documents in a single access point with complete version control.

From the Existing Program:

Python, version 3.9.5: Primary programming language of the existing program that the web
application will be based on.  The conversion of this language into either React or Golang will be
necessary to create the web application.

Matplotlib, version 3.4.2: Visualization library used to create an output of the existing algorithms
results.  This will occur on the frontend of the web application.

NumPy, version 1.20: Mathematics library used in association with the programming language
Python to create results from the algorithm.

SDMAY19-22 42



4  Testing
With this project being purely a software development project, testing will occur on exclusively
the software side.  That being said, it is recognized that testing will be extremely important for
ensuring the validity of the code that each developer will produce, and subsequently ensuring
that requirements are appropriately met.  The tools that will be used will vary depending on the
area of the development (frontend, backend, etc), but will be along the lines of software testing
tools of the various languages and frameworks that are being utilized for the development of the
project.

The testing strategy that will be utilized was agreed upon by the team, and uses modern
practices of software testing in a development environment in accordance with existing software
testing standards.  These various testing components will be performed alongside the agile
development methodology chosen for the development process of this project.

4.1 Unit Testing
We are going to utilize two testing frameworks for our separate codebases.  First, for the
client-side application, we will be using the built-in testing framework “react testing library” with
“jest.”  This gives us the ability to test individual React components, custom hooks, functions,
and mock up items between them as necessary for as much granular testing as possible. It can
simulate individual unit tests as well as simulate user input and firing of events to give us some
UI/UX testing as well, although not as much as would be preferred by QA engineers, for
example.

The server side application will use the builtin go testing framework.  This will give us a lot of
control over what is tested server side, so as not to go so far into testing where we are just
testing the library.  Individual functions, components, and modules will all need to be thoroughly
tested and have those tests passed in order to be accepted into the main branch,

The unit tests will be a baked in component of the overall CI/CD pipeline as well.  Should any
tests fail or act not according to the testing criteria in the automated tests, it will not be accepted
into the main branch.  While developers are given liberties as to the specifics of their testing,
one popular example the team is encouraged to follow is the ZOMBIE testing methodology.

4.2 Interface Testing
In this software system, we have two primary interfaces: the User Interface (UI), and the
Application Programming Interface (API).  The UI is the web-based interface that users can
interact with to perform tasks as described in the requirements.  It can take in commands and
display the results to the users.  The API communicates between the front-end and the
back-end, sending users requests generated by the UI to the algorithm, and sending completed
results back to the UI to be rendered and displayed.

SDMAY19-22 43



To test the API, automated tests such as the Unit Tests described in section 4.1 Unit Testing and
integration testing as described in section 4.3 Integration Testing can be performed periodically,
after each code push.  This testing will ensure that the API is compliant with the requirements
and prevent regression defects as development continues.

Similar to the API, the User Interface will also implement automated tests that are executed
periodically.  In addition, we will use manual testing to ensure that the user experience
requirements from our clients are met as well.  Each component’s design will include a section
that describes a UI test case, in the form of a step-by-step checklist.  During testing, the
validator will interact with the UI as described in the test case, and verify that the UI’s behavior is
exactly as expected. This combination of automated and manual testing will ensure that the
interface meets the requirements.

4.3 Integration Testing
There are a few integration paths for our design. One is between the front end and back end,
which we have designed to be via an API layer. There are also integration paths with how our
software will interact with the hosting system, which we may also test, to ensure that the
application is functioning correctly and is accessible to the users. For testing the integration
between the front and back end, we have a few options on tools.

One such option is using a headless testing browser environment, such as Selenium. This will
hook into a headless browser and run a full battery of tests against our entire application. This
will ensure that the frontend and backend are producing expected results and are integrating
together successfully and that they are producing the correct output to the user.

Another option we have is a test kit that hooks into the frontend, and triggers it to make requests
to the backend, just as a real user would. This software may be partially custom written by us to
best hook into our application. We will most likely be modifying a unit testing toolkit to make
these requests.

All these tests will be run automatically within the confines of the CI/CD pipeline. We will
probably be utilizing Docker or a system like it to spin up databases and other system
dependencies so that we can test in an environment as close to production as we can. This will
also allow us to create new databases and tables as we need, without disrupting the production
environment.

4.4 System Testing
System testing is a level of software testing that validates the complete and fully integrated
software, and as such will occur after the process of unit, interface, and integration testing.
Considering the plan is for the unit tests to be extensive and required for eventual merging into

SDMAY19-22 44



the main branch program this series of testing should occur with relative ease.  Especially when
considering that the integration testing will automatically ensure that these tests will properly run
and integrate when the code base is sent to CI/CD pipeline on the project's GitLab.  Due to this,
the process of 4.5 Regression Testing will become a part of the system testing as it will pertain
to the connecting of various developers code into the single system, and will thus require testing
alongside general system testing for ensuring existing functionality in the system is not broken.

From all of this, the system testing will expect that all existing functionality will not be broken by
new integration as well as testing the new functionality that the code being merged into the
system remains from its individual testing.

As far as what will be required for this, will be the same as the previous sections (4.1 Unit
Testing, 4.2 Interface Testing, and 4.3 Integration Testing).  There should not be any need for
additional tools for system testing as it will ensure the overall functionality of the system after
merging of new functionality.  This will mean that additional testing may be required to show full
functionality of the system from end-point to end-point.  Ideally, to ensure existing developer
bias, this series of test creation and testing will be performed by someone other than the
developer of what is being merged into the system.

In order to connect this to the requirements, any additional tests will be focused on the
functionality of the requirement that the task being merged into the main system is supposed to
create.

4.5 Regression Testing
We will be using gitlab’s integrated CI/CD tools to verify that when a new push to a feature
branch or master is made, the automated test suite to verify that functionality is intact will run,
and should any errors occur, gitlab will either prevent the merge, if the request is made against
master, or let the committer know the errors if it is a push to a feature branch.  This way we will
avoid cases where a new feature merging into the rest of the project potentially breaks the
master or production branches, and feature branches will have assurance that all required
features are working in the grand scheme of the project rather than just one developer’s
computer.

Ideally, there will be no issues with integrating new features into previous main builds of the
project, however should a feature break one or more parts of the master branch, GitLab’s CI/CD
suite will be able to tell us what exactly is conflicting or breaking what so we don’t need to guess
at any point.  The most basic regression test for us should see that the algorithm itself is not
interfered with in any way, as it is the heart of what will make this project successful.  Next,
ensuring the backend calls to that algorithm stay functional will be most important as the app
has no functionality without being able to get results out of the algorithm itself.  Next most
important is being able to interact with the backend through the user interface in the frontend,
since without a human interface, no one will be able to use our application.  These critical

SDMAY19-22 45



features should always be tested for functionality with new builds and new features before those
new features are merged into the rest of the project.

4.6 Acceptance Testing
For our acceptance testing, there are three primary steps.  Should any step result in actions to
be taken, the process will start again. The first step is the full implementation testing by the
team.  This is to verify that all the features we wanted to implement are completed and ready to
move on to the next step.  We will iterate through our requirements document and check that
each requirement is being met.  Step two would be a very similar process of going through the
requirements documentation, but this time with our client Matt Wymore.  In doing this, we can
get their perspective on if the requirements are being met to the degree that they expect. The
final iteration is then meeting with Alliant Energy, our industry reference.  We repeat the
process of going through the requirements, showing off the implementation of those
requirements, and getting a consensus on if the requirements have been met.  Additionally,
should new requirements be requested, we can evaluate the feasibility of the new
requirements, and either go back and implement them, or discuss alternatives.

4.7 Security Testing
As we develop the application, along with the server side and client side components, it is
important that we take into account the application of modern security procedures.  As such, for
components like the frontend web application, we will only send information that is explicitly
needed.  As we configure and set up the server side of the application, we will conduct a
penetration test to ensure that access cannot be obtained beyond those who are authorised to
have it.  Additionally, prior to application publishing, removing any unnecessary accounts that
may linger on the server and closing any ports that are unnecessarily open.

4.8 Results
At this time, the only results of existing testing is some basic smoke test results ensuring that
the basic framework will correctly compile and launch.

The main method for ensuring compliance with the requirements of this project will be from the
overall method of the project development - not just testing.  This method is an agile
methodology where a developer will take various tasks/issues per sprint that focus on a certain
functionality that may be a full requirement, or a part of an overarching requirement.  Once
reaching the testing phase, compliance will be further ensured by having comprehensive testing
that will be required to succeed for integration into the main branch of code.  This testing will
involve everything from checking validity of code to evaluating if the new code can correctly
perform the specific task that it was intended to based on the requirement(s) that it was
intended to address.

SDMAY19-22 46



Shown above (Figure 19: Testing Suite Procedure), is a visual representation of the project's
testing process.  It begins with unit testing of the code that is being developed which will repeat
as long as there is more functionality to be tested.  Subsequently, once all unit tests have been
completed and passed by the new code, the developer will check if either security or interface
testing will be needed (as not all functionality will).  After that has been completed and
successfully passed, integration testing will occur.  After successfully testing the integration of
the new code it will be merged into the main branch where system and regression testing will
occur in unison.  At this point, if more functionality is to be added the cycle will repeat with the
creation of the newer code for the remaining functionality.  Otherwise the project will be
complete and reach the acceptance testing phase.  This will all occur with the agile
development methodology meaning that the unit to system/regression testing phases will repeat
many times, and at least once for each added functionality.

At this time, there is not a summary narrative concluding the usefulness of this testing design.

SDMAY19-22 47



5  Professionalism
This section is with respect to the paper, “Contextualizing Professionalism in Capstone Projects
Using the IDEALS Professional Responsibility Assessment”, International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012.

5.1 Areas of Responsibility
One of the codes of ethics, related to this project, (IEEE, ACM, SE) were chosen and then
added onto the table provided in, “Contextualizing Professionalism in Capstone Projects Using
the IDEALS Professional Responsibility Assessment”.  A new column was added upon this table
at the end with a brief description of how the selected code of ethics connected to each area of
responsibility next to the National Society of Professional Engineers (NSPE) column.

The chosen code of ethics to base the evaluation off of was Software Engineering (SE) code of
ethics, and the resulting table can be found below.  The resulting description is based on the SE
code of ethics for each of the seven professional responsibilities of the table.

The seven areas of professional responsibility in the assessment instruction with an additional
column of the SE code of ethics outlined in “Computer Science and ACM Approve Software
Engineering Code of Ethics”, Computer Society Connection pp.84-88, 1999.

Area of
responsibility

Definition NSPE Canon SE code of ethics

Work of
Competence

Perform work of
high quality,
integrity, timeliness,
and professional
competence.

Perform services
only in areas of their
competence; Avoid
deceptive acts.

Accept responsibility for
one's own work while only
approving software that is
safe, meets requirements,
passes appropriate tests
without negative effects
on quality of life.

Financial
Responsibility

Deliver products and
services of
realizable value and
at reasonable costs.

Act for each
employer or client as
faithful agents or
trustees.

Ensure products,
manufactured and
modified, meet the
highest of professional
standards possible to
ensure the utmost
financial results.

Communication
Honesty

Report work
truthfully, without

Issue public
statements only in an

One must accept
responsibility for their

SDMAY19-22 48



deception, and are
understandable to
stakeholders.

objective and truthful
manner; Avoid
deceptive acts.

work while not knowingly
working in an illegal or
unethical manner.

Health, Safety, and
Well-Being

Minimize risks to
safety, health, and
well-being of
stakeholders.

Hold paramount the
safety, health, and
welfare of the public.

Approve software that
won’t diminish quality of
life, harm the
environment, and
diminish quality of life
while being fair and
supportive to colleagues.

Property
Ownership

Respect property,
ideas, and
information of clients
and others.

Act for each
employer or client as
faithful agents or
trustees.

Keep confidential
information of any client
while ensuring proper
documentation and
evidence of
nonproprietary or breach
of property or ideas.

Sustainability Protect the
environment and
natural resources
locally and globally.

Do not purposefully
accept software that will
harm the environment.

Social
Responsibility

Produce products
and services that
benefit society and
communities.

Conduct themselves
honorably,
responsibly, ethically,
and lawfully so as to
enhance the honor,
reputation, and
usefulness of the
profession.

End products should be
of the highest
professional standard
with proper procedure in
ethics in the development
process with the hope of
also participating in
lifelong learning, and
advance the integrity and
reputation of the
profession.

Table 6: Ethics Table Additions

The SE code of ethics differs from the NSPE code of ethics in each area slightly due to it being
a code based around a more specific area of engineering than the broad area of NSPE.  The
following is grouped based on each of the seven professional responsibilities.

For the responsibility “Work of Competence”, the difference between the two codes can be seen
from the more broad perspective of NSPE as it is specifically concerned with engineers

SDMAY19-22 49



performing tasks specific to their training while the SE code is specific to the work of software
engineers.

For the responsibility “Financial Responsibility”, the difference comes from the SE code of ethics
being not just financial responsibility toward employers or clients, but also general use of data
and computer resources that may lead to undue financial burdens.

For the responsibility “Communication Honesty”, there is not a really substantial difference as
the responsibility of communicating honestly to any party involved in any sort of project should
be done without any deception or omission of facts for either code of ethics.

For the responsibility “Health, Safety, and Well-Being”, in a similar way to the communication
honesty responsibility of not really being different in any real important means.  It is simply a
more specific statement for the SE code of ethics.

For the responsibility “Property Ownership”, is another responsibility that is not that different
between the two codes as this responsibility is dealing with the respect towards one’s property
and ideas which is consistent across any engineering project.  The general conclusion is to
properly act as a trustee of information for all those involved in the project.

For the responsibility “Sustainability”, the NSPE code of ethics was left blank in the original table
of the seven responsibilities making this section a clear difference between the two codes.  As
for the SE code of ethics, the responsibility breaks down to any code that one develops should
not actively have a negative impact on the environment.

For the responsibility “Social Responsibility”, is the final responsibility and is relatively similar
between the NSPE code of ethics and the SE code of ethics as they both relate to the purpose
of creating quality work at the highest level that will be done in a lawful manner while advancing
the integrity of the profession.

5.2 Project Specific Professional Responsibility Areas
This section includes a brief explanation of the applicability and the degree to which the team
has fulfilled each of the seven areas of professional responsibility that can be found defined
above in the table of section 5.1 Areas of Responsibility.

“Work of Competence”: As this means, “Perform work of high quality, integrity, timeliness, and
professional competence”, this clearly applies to the team’s project in a professional context.
This is because we want to be able to meet these attributes in the work that we put in.  Our work
should be of a high quality, while still getting completed in a timely manner with the
professionalism that would be expected of us in a real work environment.  The team, to this
point, have been performing, in this professional responsibility, really well in getting work done to
the level that would be expected while maintaining a competence towards the professionalism
of how we do so.  Giving a rating of either the high end of medium or just in the high degree of
level.

SDMAY19-22 50



“Financial Responsibility”: This responsibility applies to our project closely.  The goal for the final
product is to not only save the company time when working with underground cable bore holes,
but also reduce unnecessary spending caused by disagreements between the company and its
contractors.  Our project will have this in mind, and maximize the time and financial benefits
through deliberate design decisions.  In addition we will also reduce the cost of operating and
maintaining the tool that we create.  Our team is performing highly in this category.  We have
created a design that fulfills the requirements described above and have considered the cost of
long-term operation as well.

“Communication Honesty”: As we continue developing our project, we have strived to maintain
full clarity on what we are doing and what our objectives are.  Doing such keeps everybody
involved well-informed on our decisions.  This applies to this project because of the need to
keep everyone informed between the team members, the advisors, clients, and teaching
assistants.  The team has successfully managed to maintain excellent communication
throughout the entirety of the project planning and design process up to this point.  This has
been done with an instant chat communication method between team members, advisor, and
teaching assistant, along with regular meetings.  As well as communication with clients and
other resources through school email with a designed format.  As far as the honesty aspect, our
team has been accurately portraying the project information truthfully to all stakeholders, team
members, and everybody else involved .

“Health, Safety, and Well-Being”: Our application will be used to calculate the size of real-world
underground bores and thus how much land will need to be moved to install the cables needed.
By minimizing bore sizes, we reduce the impact on the environment albeit in a relatively small
way.  We must ensure that the calculations to determine bore size are correct and can be
relayed to the user effectively so they can apply their estimates.

“Property Ownership”: While there is no physical property, information and ideas are highly
relevant to the scope of our project.  Alliant Energy has provided us with insights into their inner
workings, and have trusted us with this.  We believe that our team is performing at a high level
to rate it. We have kept all information shared with us to ourselves, and have not distributed or
shared it beyond our circle of which it is relevant.  Additionally, we have met with representatives
from their company in order to hear their ideas and tailor our project in order to accommodate,
as their insight has been helpful in understanding the use cases.  However, while we asked
about NDA, they only recently got back to us and requested to have IP rights.  We are still in
conversation to determine if IP rights are what we want to agree to however.

“Sustainability”: We want to ensure that while our project will not produce any physical products,
we can still be responsible for how many resources we use to host the application on various
servers.  While we do not have total control over how the servers themselves hosting this
application will be run, we can ensure that we are not using high-power servers that would be
better suited to heavy computing since our application should require minimal processing power.
This does mean optimizing our code to only run calculations when necessary rather than all the
time to reduce energy consumed by a server processor.

SDMAY19-22 51



“Social Responsibility”:  We want to ensure that our project is done to the best of our ability.
Although we still have things to learn in regards to the technology and methodology we chose
for our implementation, we will do it to the best degree possible.  We will not be dealing with
confidential or proprietary information, as this is a publicly and freely available tool, available to
anyone who wishes to use it.  However with that being said, we will be restricting who can
update the publicly available profiles via an organization admin account to trusted individuals at
said user companies.  While this project is not yet complete, we hope the end result will be of
high quality and provide a positive example of the software and computer engineering
professions.

5.3 Most Applicable Professional Responsibility Area
For this section, one area of professional responsibility that is both important to this project and
the team has demonstrated a high level of proficiency in the context of this project.  This
includes a description of how this responsibility is important to this project, the ways in which the
team has demonstrated the responsibility in the project, and the impacts that it has led to for the
project.

While there are multiple professional responsibilities areas that the team has performed really
well thus far, one of the most applicable areas would be that of Communication Honesty.  The
team has a strong communication system setup for all of the types of communication that needs
to be done.  To add to the area of honesty, the information that has been communicated has
been truthful without the intent to deceive, and if there were any uncertainty or
miscommunication the team members would work to remedy the situation.

This has led to the transparency of the work that the team has been doing, and the
effectiveness of the exchange of information has allowed the team to fully figure out project
requirements, scheduling, and all of the necessary design decisions.  There have been
difficulties that have occurred during the project that have led to the need for more in depth
communication or extra meetings between appropriate parties.  The team’s communication
system and communication honesty has helped to facilitate the alleviation of these difficulties.

SDMAY19-22 52



6 Implementation
This section will be completed as the project implementation phase gets to a stage requiring
documentation beyond software documentation.

SDMAY19-22 53



7 Closing Material

7.1 Discussion
As of the date that this document was last updated [11/29/2021], there are not any lasting
results of this project as most of what has been accomplished is planning and setup for
implementation that will be occurring over the first few months of the year 2022.

7.2 Conclusion
With the content of the previous section (7.1 Discussion) in mind, what has been completed has
been a project, and design plan (seen in this document).  Various technological setup has also
occurred, including: team based GitLab, an ISU server for hosting the application and
development environments for the team, and communication channels between team members,
advisors, and clients.
Most of the results of this project up to this point is reflected in this document, the team’s
webpage, the team’s private google drive for documents, and the team’s GitLab repository (with
exceptions of software development and document creation that did not end up shared to one of
these points of storage).
The overarching goal of this project is to create a web application that will be hosted by Iowa
State University that will function as an improved implementation of the existing executable
program, and what has been accomplished to this point has been largely set up for the eventual
implementation of the project.
One goal that has already been achieved is working with ISU faculty to secure a server for
hosting the project during and after development.  Those of the appropriate role are in the
process of setting it up in order to allow for initial development to begin which has been slightly
constrained due to a slow moving back-and-forth process between the team and faculty.  Plans
to improve this is simply to maintain close communication and increase time allotment to tasks
such as this.

7.3 References
“Computer Society and ACM Approve Software Engineering Code of Ethics”, Computer Society
Connection Vol. 32, Issue: 10, pp. 84-88, 1999.

“Contextualizing Professionalism in Capstone Projects Using the IDEALS Professional
Responsibility Assessment”, International Journal of Engineering Education Vol. 28, No. 2, pp.
416–424, 2012.

IEEE. IEEE-IEEE Code of Ethics.  IEEE.org.  Retrieved November 7, 2021 from
https://www.ieee.org/about/corporate/governance/p7-8.html

SDMAY19-22 54



7.4 Appendices
This section includes any additional information that was deemed necessary or helpful to the
evaluation of the design components of this document.

7.5 Team Contract
Team Name: sdmay22-19, Underground Cable Packing Web Tool

Team Members:

1) Alexander Young 2) Brevin Wapp

3) Haadi Majeed 4) Matthew Hoskins

5) Nate Tucker 6) Tom (Jidong) Sun

7) Quinten Sorice

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

- Monday 6:00 PM - Advisor meeting - Webex
- Friday 5:00 PM - TA meeting - Virtual through Discord or Zoom (TA’s choice)
- Friday 5:30-6:30 PM - Team Meeting - In-Person (lLibrary or Senior Design Lab) or

Virtual
- Sunday 3:00-4:00 PM - Team Meeting - Virtual
- Additional meetings can be scheduled as needed through proper communication

channels

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face):

- Discord server (Senior Design 19 (sdmay22-19)) for text updates
- Google calendar for keeping track of due dates and meeting times/locations

3. Decision-making policy (e.g., consensus, majority vote):

- Majority vote for decisions that impact the team or project

4. Procedures for record-keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

SDMAY19-22 55



- The team will store meeting minutes on discord’s #document channel and Google Drive

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

- All members should attend scheduled meetings
- Within 10-15 minutes
- Communicate with the team if any emergencies

- Give advance notice as early as possible for the team to accommodate.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

- Do the thing you need to do before agreed deadlines
- Team-based work should be completed with that team (or as much of that team as

possible)

3. Expected level of communication with other team members:

- Email messages should be responded to within: 24 hour
- Discord text messages should be responded to within: Same-day
- If unavailable for extended periods: provide advance notice

4. Expected level of commitment to team decisions and tasks:

- Expectation to deliver A-level work and time commitment (school/academic terms)

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

Alexander Young: DevOps and Systems Engineer

Brevin Wapp: Scrum Master

Haadi Majeed: QA Engineer

Matthew Hoskins: Leader/Time Management

Nate Tucker: Tech Lead

Tom Sun: User Experience & Requirements

Quinten Sorice: Client Point of Contact

SDMAY19-22 56



2. Strategies for supporting and guiding the work of all team members:

- Due dates for any assignment will be available for viewing on shared calendar
- Due dates will be arranged with the contributors of the specific assignment to ensure it is

effective and attainable.
- Discussions revolving around any issues, or concerns can be brought during meetings or

over an appropriate Discord channel
- E-mail communications between advisor and TA for important or complex questions

3. Strategies for recognizing the contributions of all team members:

- Weekly update meetings
- Gitlab code impact scores / commit contributions

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.

- Matthew: Front-end web development with JavaScript and a little typescript, High level
programming language experience in Python and C’s (potentially related languages to
project development), UI/UX project work, Algorithmic math, Time management
capabilities, some MySQL and SQL experience, OOP programming.

- Tom: Front-end web development with typescript, Back-end development with Spring.
AWS (ECS, Lambda), Gitlab & Jenkins CD/CD. UI mockup with figma and UX testing.
PostgresQL (and general SQL). Git

- Quinten: Front-End development through Javascript and Adobe Experience Manager,
backend through Spring/SpringBoot, OOP with Java, general C, Docker deployment

- Haadi: Front End development web dev with JS and TS, back end with C# / .NET and
Node JS, databasing via SQL, MSSQL, Postgres.

- Nate: Front End development with React JS in JS in TS. Back end development with
Node JS, Django, ASP.NET Core, Springboot. AWS Serverless deployments with
Amplify, API Gateway, Lambda, and Dynamo DB. Unit testing with react testing library
and junit, Fluent Assertions in C#.

- Alex: Front End development with React JS Old in ES6 and TS. Backend development
with ASP.NET Core, Go, Ruby, and with Azure Technology Fleet. Systems administration
of Windows and Linux environments. Automation experience with PowerShell, Ruby,

SDMAY19-22 57



Puppet Labs Puppet, Red Hat Ansible. SQL Experience with Microsoft SQL Server, and
PostgreSQL.

- Brevin: Front End development with React JS in JS, TS. Backend development with
.NET Entity Framework Core (C#), Spring Boot (Java), C, C++, Clojure, SQL via
MYSQL, PostgreSQL, Bash.

2. Strategies for encouraging and support contributions and ideas from all team members:

- Allow each person to explain/talk uninterrupted and then give thoughts/feedback
- Brainstorming sessions for generating ideas
- “Help Hours” where team members can come together to ask questions

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity or
ability to contribute?)

- As for identifying:
- Repeated disagreements
- Difficulty identifying a correct/best course of action, or decision
- Failure to produce work without visible effort or seeking help
- Lack of communication

- Resolving:
- Take it to a team vote if needed
- Defer to Project Manager
- Have conflicting parties meet with TA to settle the dispute if unable to resolve

internally

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

- Create a web application design and algorithm design
- Potential proof-of-concept mockup
- Create an implementation plan
- Work as a team to produce results
- Create requirements for clients and implementation
- Finish most dev-ops tasks (setting up project manager board, CI/CD, infrastructure

access, etc.)

2. Strategies for planning and assigning individual and teamwork:

- GitLab built-in board for ticket/task management
- Whole-Team or stack-based team meetings for ticket assignment

SDMAY19-22 58



3. Strategies for keeping on task:

- Weekly update meetings, sharing progress and roadblocks
- Adding time estimates to issues
- Ask for help if needed, both internally and externally
- Stay on-topic during team meetings, having meeting agendas

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

- Acknowledge the problem, be it personally or apparent team problems
- Address that problem using team management skills

2. What will your team do if the infractions continue?

- Consult Senior Design administration

***************************************************************************

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Alexander Young DATE September 18, 2021

2) Brevin Wapp DATE September 18, 2021

3) Haadi Majeed DATE September 18, 2021

4) Matthew Hoskins DATE September 18, 2021

5) Nathan Tucker DATE September 18, 2021

6) Jidong Sun DATE September 18, 2021

7) Quinten Sorice DATE September 18, 2021

SDMAY19-22 59


