
 4 Testing
 With this project being purely a software development project, testing will occur on exclusively
 the software side. That being said, it is recognized that testing will be extremely important for
 ensuring the validity of the code that each developer will produce, and subsequently ensuring
 that requirements are appropriately met. The tools that will be used will vary depending on the
 area of the development (frontend, backend, etc), but will be along the lines of software testing
 tools of the various languages and frameworks that are being utilized for the development of the
 project.

 The testing strategy that will be utilized was agreed upon by the team, and uses modern
 practices of software testing in a development environment in accordance with existing software
 testing standards. These various testing components will be performed alongside the agile
 development methodology chosen for the development process of this project.

 4.1 Unit Testing
 We are going to utilize two testing frameworks for our separate codebases. First, for the
 client-side application, we will be using the built-in testing framework “react testing library” with
 “jest.” This gives us the ability to test individual React components, custom hooks, functions,
 and mock up items between them as necessary for as much granular testing as possible. It can
 simulate individual unit tests as well as simulate user input and firing of events to give us some
 UI/UX testing as well, although not as much as would be preferred by QA engineers, for
 example.

 The server side application will use the builtin go testing framework. This will give us a lot of
 control over what is tested server side, so as not to go so far into testing where we are just
 testing the library. Individual functions, components, and modules will all need to be thoroughly
 tested and have those tests passed in order to be accepted into the main branch,

 The unit tests will be a baked in component of the overall CI/CD pipeline as well. Should any
 tests fail or act not according to the testing criteria in the automated tests, it will not be accepted
 into the main branch. While developers are given liberties as to the specifics of their testing, one
 popular example the team is encouraged to follow is the ZOMBIE testing methodology.

 4.2 Interface Testing
 In this software system, we have two primary interfaces: the User Interface (UI), and the
 Application Programming Interface (API). The UI is the web-based interface that users can
 interact with to perform tasks as described in the requirements. It can take in commands and
 display the results to the users. The API communicates between the front-end and the
 back-end, sending users requests generated by the UI to the algorithm, and sending completed
 results back to the UI to be rendered and displayed.

 1

 To test the API, automated tests such as the Unit Tests described in section 4.1 and integration
 testing as described in section 4.3 can be performed periodically, after each code push. This
 testing will ensure that the API is compliant with the requirements and prevent regression
 defects as development continues.

 Similar to the API, the User Interface will also implement automated tests that are executed
 periodically. In addition, we will use manual testing to ensure that the user experience
 requirements from our clients are met as well. Each component’s design will include a section
 that describes a UI test case, in the form of a step-by-step checklist. During testing, the validator
 will interact with the UI as described in the test case, and verify that the UI’s behavior is exactly
 as expected. This combination of automated and manual testing will ensure that the interface
 meets the requirements.

 4.3 Integration Testing
 There are a few integration paths for our design. One is between the front end and back end,
 which we have designed to be via an API layer. There are also integration paths with how our
 software will interact with the hosting system, which we may also test, to ensure that the
 application is functioning correctly and is accessible to the users. For testing the integration
 between the front and back end, we have a few options on tools.

 One such option is using a headless testing browser environment, such as Selenium. This will
 hook into a headless browser and run a full battery of tests against our entire application. This
 will ensure that the frontend and backend are producing expected results and are integrating
 together successfully and that they are producing the correct output to the user.

 Another option we have is a test kit that hooks into the frontend, and triggers it to make requests
 to the backend, just as a real user would. This software may be partially custom written by us to
 best hook into our application. We will most likely be modifying a unit testing toolkit to make
 these requests.

 All these tests will be run automatically within the confines of the CI/CD pipeline. We will
 probably be utilizing Docker or a system like it to spin up databases and other system
 dependencies so that we can test in an environment as close to production as we can. This will
 also allow us to create new databases and tables as we need, without disrupting the production
 environment.

 4.4 System Testing
 System testing is a level of software testing that validates the complete and fully integrated
 software, and as such will occur after the process of unit, interface, and integration testing.

 2

 Considering the plan is for the unit tests to be extensive and required for eventual merging into
 the main branch program this series of testing should occur with relative ease. Especially when
 considering that the integration testing will automatically ensure that these tests will properly run
 and integrate when the code base is sent to CI/CD pipeline on the project's GitLab. Due to this,
 the process of 4.5 Regression Testing will become a part of the system testing as it will pertain
 to the connecting of various developers code into the single system, and will thus require testing
 alongside general system testing for ensuring existing functionality in the system is not broken.

 From all of this, the system testing will expect that all existing functionality will not be broken by
 new integration as well as testing the new functionality that the code being merged into the
 system remains from its individual testing.

 As far as what will be required for this, will be the same as the previous sections (4.1 Unit
 Testing, 4.2 Interface Testing, and 4.3 Integration Testing). There should not be any need for
 additional tools for system testing as it will ensure the overall functionality of the system after
 merging of new functionality. This will mean that additional testing may be required to show full
 functionality of the system from end-point to end-point. Ideally, to ensure existing developer
 bias, this series of test creation and testing will be performed by someone other than the
 developer of what is being merged into the system.

 In order to connect this to the requirements, any additional tests will be focused on the
 functionality of the requirement that the task being merged into the main system is supposed to
 create.

 4.5 Regression Testing
 We will be using gitlab’s integrated CI/CD tools to verify that when a new push to a feature
 branch or master is made, the automated test suite to verify that functionality is intact will run,
 and should any errors occur, gitlab will either prevent the merge, if the request is made against
 master, or let the committer know the errors if it is a push to a feature branch. This way we will
 avoid cases where a new feature merging into the rest of the project potentially breaks the
 master or production branches, and feature branches will have assurance that all required
 features are working in the grand scheme of the project rather than just one developer’s
 computer.

 Ideally, there will be no issues with integrating new features into previous main builds of the
 project, however should a feature break one or more parts of the master branch, GitLab’s CI/CD
 suite will be able to tell us what exactly is conflicting or breaking what so we don’t need to guess
 at any point. The most basic regression test for us should see that the algorithm itself is not
 interfered with in any way, as it is the heart of what will make this project successful. Next,
 ensuring the backend calls to that algorithm stay functional will be most important as the app
 has no functionality without being able to get results out of the algorithm itself. Next most
 important is being able to interact with the backend through the user interface in the frontend,
 since without a human interface, no one will be able to use our application. These critical

 3

 features should always be tested for functionality with new builds and new features before those
 new features are merged into the rest of the project.

 4.6 Acceptance Testing
 For our acceptance testing, there are three primary steps. Should any step result in actions to
 be taken, the process will start again. The first step is the full implementation testing by the
 team. This is to verify that all the features we wanted to implement are completed and ready to
 move on to the next step. We will iterate through our requirements document and check that
 each requirement is being met. Step two would be a very similar process of going through the
 requirements documentation, but this time with our client Matt Wymore. In doing this, we can
 get their perspective on if the requirements are being met to the degree that they expect. The
 final iteration is then meeting with Alliant Energy, our industry reference. We repeat the process
 of going through the requirements, showing off the implementation of those requirements, and
 getting a consensus on if the requirements have been met. Additionally, should new
 requirements be requested, we can evaluate the feasibility of the new requirements, and either
 go back and implement them, or discuss alternatives.

 4.7 Security Testing
 As we develop the application, along with the server side and client side components, it is
 important that we take into account the application of modern security procedures. As such, for
 components like the frontend web application, we will only send information that is explicitly
 needed. As we configure and set up the server side of the application, we will conduct a
 penetration test to ensure that access cannot be obtained beyond those who are authorised to
 have it. Additionally, prior to application publishing, removing any unnecessary accounts that
 may linger on the server and closing any ports that are unnecessarily open.

 4.8 Results
 At this time, the only results of existing testing is some basic smoke test results ensuring that
 the basic framework will correctly compile and launch.

 The main method for ensuring compliance with the requirements of this project will be from the
 overall method of the project development - not just testing. This method is an agile
 methodology where a developer will take various tasks/issues per sprint that focus on a certain
 functionality that may be a full requirement, or a part of an overarching requirement. Once
 reaching the testing phase, compliance will be further ensured by having comprehensive testing
 that will be required to succeed for integration into the main branch of code. This testing will
 involve everything from checking validity of code to evaluating if the new code can correctly
 perform the specific task that it was intended to based on the requirement(s) that it was
 intended to address.

 4

 Shown above, is a visual representation of the project's testing process. It begins with unit
 testing of the code that is being developed which will repeat as long as there is more
 functionality to be tested. Subsequently, once all unit tests have been completed and passed by
 the new code, the developer will check if either security or interface testing will be needed (as
 not all functionality will). After that has been completed and successfully passed, integration
 testing will occur. After successfully testing the integration of the new code it will be merged into
 the main branch where system and regression testing will occur in unison. At this point, if more
 functionality is to be added the cycle will repeat with the creation of the newer code for the
 remaining functionality. Otherwise the project will be complete and reach the acceptance testing
 phase. This will all occur with the agile development methodology meaning that the unit to
 system/regression testing phases will repeat many times, and at least once for each added
 functionality.

 At this time, there is not a summary narrative concluding the usefulness of this testing design.

 5

